
May 10, 2017

The Honorable Brian Kemp
214 State Capitol
Atlanta, Georgia 30334
(Via email tfleming@sos.ga.gov)

Dear Secretary Kemp:

We write to request your prompt review of Georgia’s voting system under the provisions
of Georgia Code §21-2-379.2 to assess whether the current voting system “can be safely
and accurately used” in the June 20 Congressional District 6 election. Georgia has a long
history of voter concerns related to the unverifiable touchscreen voting system with no
paper trail. Concerns have escalated because of recent unresolved security issues, as well
as the heightened risk of cyber attacks in the current environment. We respectfully
request that your office undertake, at a minimum, a partial review of the system to
determine whether specific hardware, software, and procedures can be safely and
accurately used as required by §21-2-379.2, and separately whether the system
is in compliance with applicable federal and state election standards.

Given the indisputable escalation of cyber-security threats in the 15 years since the
Diebold system was deployed, this examination is essential for public confidence and
security of the upcoming June 20 election. Given the unprecedented national interest in
the runoff election, we urge your office to undertake this work immediately. In the likely
event that system security deficiences are detected, officials should implement a paper
ballot election.

To define the highest-priority areas for our requested review, we have conferred with
computer scientists experts in voting system security. We are not seeking a complete
“top-to-bottom” certification and laboratory system testing review prior to the conduct
of the June 20 election. We are not requesting an immediate recertification of the
system. Instead, we request that you initially respond to our concerns by reference to
system records. Responses to our listed concerns should be readily available in your
office’s existing records, staff knowledge and resources, and through conferral with the
Center for Election Systems at Kennesaw State University.

We are Georgia electors who believe that the national attention focused on the June 20
special election calls for increased scrutiny concerning the transparency, security, and
verifiability of our voting system.

We believe that responses to our listed concerns can be answered within a few hours by
knowledgeable staff of your office and the Center for Election Systems. The cost of this
reexamination should be modest, and should be borne by the state, not by private
citizens. We respectfuly request that you charge only de minimis amounts or waive the
requirement that requesting citizens bear the cost of this essential examination
conducted for the benefit of all Georgia voters.

The priority areas related to safety and accuracy of the system listed below must be
satisfactorialy addressed in a publicly available report prior to the June 20 election.

Priority areas related to safety and accuracy of the system include:

1. March 15 Computer Scientist Inquiry
Leading voting system computer scientists expressed their concerns about
Georgia’s system and urged you to move the state forward to a system of paper
ballots in their March 15 letter attached as Exhibit A. It is our understanding that
no response was received from your office. Please address the concerns raised in
the letter by disclosing the conclusions made by your office and any mitigating
actions taken or planned.

2. Database design
The attached research, GEMS Tabulation Database Design Issues in Relation to
Voting Systems Certification Standards by Thomas P. Ryan and Candice Hoke
(Exhibit B), presents architecture flaws in the GEMS database design that create
unacceptable risks of inaccurate tabulation and reporting. What mitigation has
been employed to address these vulnerabilities, and how have any mitigation
efforts been tested for adequacy?

3. Malicious attack code threat

The attached research, Security Analysis of the Diebold AccuVote-TS Voting
Machine by Ariel J. Feldman, J. Alex Halderman, and Edward W. Felten (Exhibit
C), presents detailed and important security weaknesses in the Diebold system.
Section 2.2 explains various ways that attack code could be installed. The
referenced work is also summarized in these two video recordings—one from a
Congressional hearing (https://www.youtube.com/watch?v=HBqGzgxcfAk) and
one in a laboratory setting (https://www.youtube.com/watch?v=aZws98jw67g).
Have the security weaknesses presented in these videos been mitigated to ensure
that the machines can be used “safely and accurately” without realistic security
attacks? If so, please provide a description and date of the mitigation efforts.

4. Security of electronic transmission of votes and results
Votes and results are transmitted via modem from PCMCIA TS memory cards to
GEMS servers. Are these election night transmissions of memory card data
secured through cryptographic means to prevent interception and possible
alteration on their way to the GEMS servers? If so, please provide a description
and effective date.

5. Memory card security
What system software protections prevent the introduction of substituted or
modified TS PCMCIA cards prior to TSx uploading to the GEMS server? What
system controls are in place to ensure that all precinct cards have been collected
and successfully uploaded? What measures prevent forged or maliciously
programmed voter access or supervisor cards from transmitting malware to the
voting machines?

6. Accessibility of audit logs

In compliance with VVSG2002 2.2.4.2 and 2.2.5, are cast vote records, TS and
TSx audit logs, OS audit logs, and GEMS audit logs readily exportable in human-
readable format reports to permit officials, observers, and members of the public
to timely review and verify against reported totals? Do current procedures
require review of such audit logs for signs of irregularities or system errors?

7. Internet exposure

What specific guidelines and required processes prevent connecting TS or TSx
voting machines or the GEMS servers to the Internet either directly or through
the use of removable media (such as flash memory cards) that have been exposed
or connected to the Internet?

8. Uploading protocols

What specific guidelines, required processes, and/or software mechanisms are in
place to prevent improper election data, including cast votes, from being
uploaded to the GEMS servers either because of human error or software or
hardware failures?

9. Encryption key disclosure

Was the system upgraded and secured against malicious use of the encryption
key after it was erroneously published on the Internet? If so, please disclose the
date and version numbers of software upgrades or repairs that address the
system security issues presented by the widespread knowledge of the system
encryption key.

10. ExpressPollbook software flaws
At the April 22 meeting, the Fulton County Election Board discussed pollbook
software errors that caused voters to be sent to improper precincts during the
April 18 election. Please explain the source of the software problems and what
mitigation steps have been taken to protect the June 20 election from this
software issue’s harmful impacts and potential voter disenfranchisement.

11. Physical security of voting machines (DREs)

How are DREs protected from intrusion when not in use, including storage
before and after they are delivered to the polling place and during warehouse
storage after the election? Given the large number of machines, polling locations,
and ease of concealing physical intrusion into the machines, we are concerned
that is it impractical to ensure that machines are protected from intrusions that
can implant malware. Please reference Exhibit C, section 2.2.1.

12. Compliance with certification standards

Is the system as currently configured and used certified under federal standards?
What standards of certification are required for this specific system configuration
under current Georgia law? Is the state certification documentation current?

We are concerned that the system cannot be used safely and accurately, particularly if
deficiencies are identified in any of the above controls. As noted in the Security Analysis
of the Diebold AccuVote-TS Voting Machine, Section 5.4 in Exhibit C, even if the current
system configuration is certified to VVSG2002 standards, such certification does not
imply that the system can be “safely and accurately used” as §21-2-379.2(c)
requires.

The above list of priority areas is not comprehensive. As we continue to confer with
voting system computer scientists, we may amend this letter to add other urgent
concerns or remove any less urgent concerns.

We do not seek any proprietary information or security details that would compromise
the security of the voting system. Instead, we request a description of the type of review
undertaken and a general description of any mitigation adopted that would assure the
public that the system is free from previously disclosed security risks.

The software versions we understand to be in current use are listed on Exhibit D. Please
inform us if our understanding is inaccurate, and please supply a list of currently
installed software.

We also request a copy of the most recent certification documentation for the current
voting system and its compliance with applicable Georgia law and election rules.

Dr. Duncan Buell is our technical adviser and contact point for purposes of discussions
with your office. You may contact him through buell@acm.org and 803-479-7128. Dr.
Buell is the NCR Chair in Computer Science and Engineering at the University of South
Carolina and a voting systems expert.

Thank you for your prompt consideration of our request.

Sincerely,

Mustaque Ahamad
Atlanta, GA 30306

David Bader
Atlanta, GA 30306

Ricardo Davis
Woodstock, Georgia 30188

Richard DeMillo
Atlanta GA 30305

Virginia Forney
Atlanta, GA 30309

Merrick Furst
Atlanta 30306

Adam Ghetti
Atlanta, GA 30324

Jeff Levy
Atlanta, GA 30306

Rhonda J. Martin
Atlanta, GA 30305

Paul Nally
Rydal, GA 30171

Michael S Optiz
Marietta, GA

cc: DeKalb County Elections, H. Maxine Daniels, Director voterreg@dekalbcountyga.gov
Fulton County Elections, Director Richard Barron Richard.Barron@fultoncountyga.gov
Cobb County Election Director Janine Eveler, info@cobbelections.org

March 15, 2017

The Honorable Brian Kemp
214 State Capitol
Atlanta, Georgia 30334

Dear Secretary Kemp,

On March 3rd it was reported that the Federal Bureau of Investigations is conducting a criminal
investigation into an alleged cyber attack of the Kennesaw State University Center for Election
Systems. According to the KSU Center for Election Systems’ website, “the Secretary of State
authorized KSU to create a Center for Election Systems, dedicated to assisting with the
deployment of the Direct Record Electronic (DRE) voting technology and providing ongoing
support.”1 The Center is responsible for ensuring the integrity of the voting systems and
developing and implementing security procedures for the election management software installed
in all county election offices and voting systems.

The Center has access to most if not all voting systems and software used in Georgia. It also is
responsible for programming these systems and accessing and validating the software on these
systems. It is our understanding that the Center also programs and populates with voter records
the electronic poll books used in polling places statewide. A security breach at the Center could
have dire security consequences for the integrity of the technology and all elections carried out in
Georgia.

In order for citizens to have faith and confidence in their elections, transparency is crucial,
including about events such as the KSU breach, and its extent and severity. While we understand
that this investigation is ongoing and that it will take time for the full picture to emerge, we
request that you be as forthcoming and transparent as possible regarding critical information
about the breach and the investigation, as such leadership not only will be respected in Georgia
but also emulated in other states where such a breach could occur. We expect that you are
already pursuing questions such as the following, regarding the breach, and trust that you will
make public the results of such inquiry:

1. Can you estimate when the attacker breached KSU’s system?
2. How did the attacker breach KSU’s system?
3. How was the breach discovered?
4. Which files were accessed?
5. Were any files accessed that related to software or "hashes" for the voting machines?
6. Is there any evidence that files were modified? If so, which files?
7. Had KSU begun ballot builds for the upcoming special election?
8. To whom are these attacks being attributed? Could this be an insider attack? Has the FBI

identified any suspects or persons of interest?

1 http://elections.kennesaw.edu/about/history.php

Exhibits to 5.10.17 Kemp letter Page 1

marilynmarks
Typewritten Text

marilynmarks
Typewritten Text
Exhibit A

9. Has the FBI examined removable media for the possibility of implanted malware?
10. Has the FBI examined the hash or verification program for tampering?
11. What mitigations are planned for the near- and long-term?

In any state an attack on a vendor providing software and system support with such far-reaching
responsibilities would be devastating. This situation is especially fragile, because of the reliance
on DRE voting machines that do not provide an independent paper record of verified voter
intent. KSU has instead sought to verify the validity of the software on the voting machines by
running a hash program on all machines before and after elections in an effort to confirm that the
software has not been altered. However, if KSU’s election programming were compromised, it
is also possible that the verification program could have been modified to affirm that the
software is correct, even if it were not. This is a risk of using software to check the correctness of
software.

Of course all Georgia elections are important. This month and next include special elections as
well. If these upcoming elections are to be run on DREs and e-pollbooks that are maintained and
programmed by KSU while the KSU Center for Election Systems is itself the subject of an
ongoing criminal investigation, it can raise deep concerns. And today’s cyber risk climate is not
likely to improve any time soon.

We urge you to provide Georgia’s citizens with information they need to confirm before going to
vote that their name will appear correctly on the voter rolls, as well as back-up printed voter lists
in case anomalies appear. Most importantly, we urge you to act with all haste to move Georgia to
a system of voter-verified paper ballots and to conduct post-election manual audits of election
results going forward to provide integrity and transparency to all of Georgia’s elections. We
would be strongly supportive of such efforts and would be willing to help in any way we can.

Sincerely,

 Dr. Richard DeMillo
 Charlotte B, and Roger C. Warren Professor of Computing
 Georgia Tech

Dr. Andrew W. Appel
Eugene Higgins Professor of Computer
Science,
Princeton University

Dr. Duncan Buell
Professor, Department of Computer Science
& Engineering, NCR Chair of Computer
Science & Engineering,
University of South Carolina

Dr. Larry Diamond
Senior Fellow, Hoover Institute and
Freeman Spogli Institute, Stanford University

Dr. David L. Dill
Professor of Computer Science,
Stanford University

Dr. Michael Fischer Dr. J. Alex Halderman

Exhibits to 5.10.17 Kemp letter Page 2

Professor of Computer Science,
Yale University

Professor, Computer Science and Engineering
Director, Center for Computer Security and
Society
University of Michigan

Dr. Joseph Lorenzo Hall
Chief Technologist,
Center for Democracy & Technology

Candice Hoke
Co-Director, Center for Cybersecurity &
Privacy Protection and Professor of Law,
Cleveland State University

Harri Hursti
Chief Technology Officer and co-founder,
Zyptonite, and founding partner, Nordic
Innovation Labs.

Dr. David Jefferson
Lawrence Livermore National Laboratory

Dr. Douglas W. Jones
Department of Computer Science
University of Iowa

Dr. Joseph Kiniry
Principal Investigator, Galois
Principled CEO and Chief Scientist,
Free & Fair

Dr. Justin Moore
Software Engineer, Google

Dr. Peter G. Neumann
Senior Principal Scientist, SRI International
Computer Science Lab, and moderator of the
ACM Risks Forum

Dr. Ronald L. Rivest
MIT Institute Professor

Dr. John E. Savage
An Wang Professor of Computer Science,
Brown University

Bruce Schneier
Fellow and lecturer
Harvard Kennedy School of Government

Dr. Barbara Simons
IBM Research (retired),
former President Association for Computing
Machinery (ACM)

Dr. Philip Stark
Associate Dean, Division of Mathematics and
Physical Sciences,
University of California, Berkeley

Dr. Vanessa Teague
Department of Computing & Information
systems, University of Melbourne

Affiliations are for identification purposes only, they do not imply institutional endorsements.

Exhibits to 5.10.17 Kemp letter Page 3

GEMS Tabulation Database Design Issues in Relation to
Voting Systems Certification Standards

Thomas P. Ryan1 and Candice Hoke2

Abstract

 This paper analyzes the Diebold Election Systems,
Inc. election management software (GEMS) using
publicly accessible postings of GEMS election
databases. It finds that the GEMS architecture fails to
conform to fundamental database design principles
and software industry standards for ensuring accurate
data. Thus, in election tabulations, aspects of the
GEMS design can lead to, or fail to protect against,
erroneous reporting of election results. Further,
GEMS’s dependence on Microsoft’s JET technology
introduces additional risks to data accuracy and
security.

Despite these technical and systemic deficiencies,
GEMS received approval as complying with Federal
Voting System 2002 standards. Questions then arise
concerning the adequacy of the 2002 and 2005
regulatory standards. The paper concludes that the
standards structurally encourage and reward election
system vendors for using less exacting database design
standards.

With unprecedented Federal funding available to

States under the Help America Vote Act of 2002
(HAVA),3 election administration has become highly
reliant on computer technologies. While some
continue to praise the new voting and tabulation
technologies as a significant advance, the augmented
computerization has introduced new possibilities for
wide-impact election operational errors and may have
opened new avenues for tampering with election
results. Previous vulnerability analyses have focused
on a direct-recording electronic (DRE) voting
machine,4 a paper ballot optical scanning device,5

1 J.D., 2007; Technical Staff, Center for Election Integrity,
Cleveland State University.
2 Director, Center for Election Integrity and Associate Professor of
Law, Cleveland State University. This paper was submitted to
EVT/USENIX on April 23, 2007, accepted for publication on June
1, 2007, and will be presented at the EVT ’07 Conference on August
6, 2007. A longer version will be available by August 1, 2007
(posted in the Working Papers section, Center for Election Integrity
website, www.urban.csuohio.edu/cei/) that is styled for the
nontechnical audience. The Center initiated the Collaborative Public
Audit of the November 2006 election in Cuyahoga County cited
here, and its staff provided technical analysis for the audit.
3 42 U.S.C. §§ 15301 – 15545 (2006).
4 Ariel J. Feldman et al., Security Analysis of the Diebold AccuVote-
TS Voting Machine, (Sept. 13, 2006), at
http://itpolicy.princeton.edu/voting/ts-paper.pdf.

computerized vote-tallying,6 and a pilot test of internet
voting.7 But the systemic design features of currently
utilized election tabulation databases have yet to be
closely examined.
 This paper analyzes the Diebold Election
Systems, Inc. (DESI) election management software
named Global Election Management System
(“GEMS”) using publicly accessible postings of
GEMS election databases.8 It finds that the GEMS
architecture violates fundamental design principles
and software industry standards for ensuring accurate
data. When utilized for election tabulations, the
GEMS design can lead to data errors, which in turn
create a serious risk for generating erroneous election
results. GEMS architectural design plus its use of
Microsoft’s JET technology,9 introduces significant
risk of data errors in elections administered using
GEMS.

Either of these design aspects would be
worrisome. For the GEMS database (DB) to have
been structured with fundamental flaws at the levels of
both system architecture and system technology, and
yet still obtain Federal and State certification, raises
questions concerning the adequacy of the existing
regulatory standards. Thus the paper turns to ask
what the relationship is between the regulatory
standards and the technical database flaws. It argues
the regulatory standards structurally encourage low
DB design standards rather than promoting the use of
tabulation system architecture that meet widely
recognized industry standards for data accuracy and
reliability.
 This paper proceeds by briefly reviewing the DB
design principles of the First and Second Normal
Forms. In part II, the paper examines the GEMS DB
in light of these fundamental design principles,
concluding that GEMS does not satisfy even the most

5 Hursti, Hari, Critical Security Issues with Diebold Optical Scan
Design, (July 4, 2005), at
http://www.blackboxvoting.org/BBVreport.pdf.
6 Saltman, Roy G., Accuracy, Integrity, and Security in
Computerized Vote-Tallying, NBS Special Publication 500-158,
(August 1988), http://www.itl.nist.gov/lab/specpubs/500-158.htm.
7 David Jefferson, Ari D. Rubin, Barbara Simons, David A. Wagner,
A Security Analysis of the Secure Electronic Registration and Voting
Experiment (SERVE), at
http://www.cs.berkeley.edu/~daw/papers/servereport.pdf
8See http://www.equalccw.com/dieboldtestnotes.html and
http://www.bbvforums.org/forums/messages/2197/44189.html This
paper’s GEMS assessment is perforce limited to examples of the end
product but the design flaws are discernible at this level.

Exhibits to 5.10.17 Kemp letter Page 4

marilynmarks
Typewritten Text
 Exhibit B

Page 2 of 7

basic, essential precepts of the First Normal Form.
Further, its use of JET technology renders GEMS
susceptible to additional difficulties. Part III critically
evaluates the federal regulatory structure and standards
for certifying election management software. It
concludes that the federal standards produce the
unintended and injurious consequence of rewarding
poor database designs with lower vendor research and
development costs, and faster movement through less
intensive certification reviews than if the DB design
were more sophisticated.10

I. Database Design Fundamentals

Any successful database (DB) must accurately
and precisely store data without mixing values or
losing information--an obvious essential in managing
election results data. To diminish the incidence of
anomalies which reduce the accuracy of DB contents,
computer science and engineering have established
fundamental DB design precepts, including
“normalization.”11
 Normalization is a methodology of DB design that
creates proper relations, removes redundant data,
promotes efficient use of disk space,12 and reduces the
likelihood that accessing and manipulating data will
result in anomalies. Normal form classification uses
consecutive, progressive numerical titles (e.g., 1NF) to
describe in shorthand whether a particular DB has
satisfied the fundamental design precepts. If a DB
design has not been normalized, the DB has been
designed in a manner that fails to prevent avoidable
errors and data corruption.13 For example, when the
DB design causes storage of specific data in multiple
locations or tables, updates to that data can cause
anomalies to occur. Failure to update the specific data
in every location virtually simultaneously causes
inconsistencies in the data between the two locations
(an update anomaly). Normalized DBs also create
correct dependencies14 among data sets. Incorrect

10The term “database” within this paper is limited to a modern
relational database. Owing to limitations where proprietary software
is protected from certain types of evaluative reviews the
examination of GEMS DB design and implementation issues is not
comprehensive. Instead, the paper seeks to serve as a starting point
for future computer science, industry, and regulatory public policy
analyses.
11 Edgar F. Codd, Normalized Data Base Structure: A Brief
Tutorial, Proceedings of 1971 ACM-SIGFIDET Workshop on Data
Description, Access and Control, 1-21 (November 11-12, 1971).
12 Ponniah, Paulraj, Database Design and Development, at 308-9
(3d ed. 2003).
13“Data corruption” as used in this paper and in computer science
indicates a departure from the original or from what is pure or
correct; the term need not import malevolent intent or an operator’s
deliberate intrusion to modify stored values.
14 Dependencies are relationships between data, where one value
depends on another. To credit the correct number of votes to
candidate Joe Smith, one table may specify an identifier as ‘1234’,

dependencies can create errors when data is added or
deleted from the DB.

A. Normal Forms

1. First Normal Form (1NF)

As Edgar Codd has outlined,15 satisfaction of the
first Normal Form requires a DB design to (a)
eliminate repeating groups in individual tables
(atomicity);16 (b) identify each set of related data with
a primary key; 17 and (c) create a separate table for
each set of related data.18
 Violations of the first Normal Form (1NF) include
the flaws of repeating groups, the absence of unique
identifiers, the inclusion of multiple meaningful values
in a single field, and the inclusion of multiple columns
representing the same type of atomic data. Data
corruption is highly probable if any of these violatons
are found within the DB design.

 2. Second Normal Form (2NF)

The overarching purpose of the Second Normal
Form (2NF) is to reduce the amount of redundant and
duplicate entries within a DB. A DB table satisfies
2NF if (a) it conforms to 1NF and (b) each non-
primary key element is dependent upon the primary
key.19 DB satisfaction of 2NF means tables with
repeating information separate the repeating data and
reference those records through the use of “integrity
constraints.” Integrity constraints provide a method to
ensure data entry changes or updates do not result in a
loss of data consistency.20 The most common tool
deployed is known as a foreign key

The first and second Normal Forms contain the
most fundamental design principles for efficient and
accurate DBs. Any DB that fails to satisfy the first
two Normal Forms will suffer various failures upon
deployment.

and then the identifier 1234 is defined in a separate table to be Joe
Smith
15 Codd, Edgar F., A Relational Model of Data for Large Shared
Data Banks, 13 (6) Comm. of the ACM 13, 377-87 (June 1970) at
http://www.acm.org/classics/nov95/toc.html.
16 A repeating group is one that is not atomic, that is, holds more
than one meaningful entry per data block.
17 A primary key is a unique identifier; most commonly the table
will start with the integer 1 and increase entry by a factor of one.
e.g. 1,2,3,4, etc.
18 Related data is data with such a strong relationship that it should
not be separated. A common example is the elements of an
individuals address. (i.e. Street number, street, city, state, zip).
19 See Codd, note 12.
20 Abraham Silberschatz et al., Database System Concepts, 193 (3d
ed. 1999).

Exhibits to 5.10.17 Kemp letter Page 5

Page 3 of 7

II. GEMS Database Design Flaws

This paper’s analysis of the GEMS DB design is

based on review of publicly available GEMS election
DBs that are publicly accessible via the internet.21

A. System Architecture Design Flaws

 Analysis of the GEMS DB architecture22
demonstrates that it violates both 1NF and 2NF.

1. Violations of 1NF

The GEMS DB design violates fundamental
principles of DB architecture for it fails to conform to
several 1NF principles. Consequently, GEMS is
susceptible to the common errors and anomalies that
1NF seeks to eliminate. Most troubling,
nonconformity with 1NF can cause erroneous data to
be entered into the DB through normal operation of
the system. System failures can then occur without an
operator knowing or having any indication that the
system is failing because the DB lacks essential design
constraints in place to prevent invalid data.

First 1NF Violation: GEMS’s Race table violates
1NF because it has multiple columns representing the
same type of atomic data. The Race table is structured
for two columns to contain the same type of atomic
data, VGroup1Id and VGroup2Id, but the purpose of
having two columns cannot be distinguished from
examining the table alone. Through normal operation,
the GEMS design creates unnecessary processing and
uses DB storage inefficiently. GEMS thus violates
one of the main purposes of the 1NF: eliminating
duplicative columns from the DB.23

Second 1NF Violation: GEMS includes multiple
meaningful values within a single field as
demonstrated by the VCenter table of GEMS. The
VCenter table holds information regarding polling
locations but because of the column “Label,” the
VCenter table violates 1NF: multiple meaningful
values are held within the same field. Combining data
in this manner makes it difficult to query voting
locations and allows for numerous entries for the same
polling location.

Third 1NF Violation: Several GEMS tables lack
a unique identifier, a failure demonstrated by review
of Figure 1. Within the two Counter tables, the third

21See note 8 above.
22 DESI’s GEMS software includes components for electronic ballot
creation and other tasks but this paper restricts its scope to the
GEMS database design for interacting with JET to manage election
tabulations and the reporting of results.
23 Kent, W., A Simple Guide to Five Normal Forms in Relational
Database Theory, 26 Comm. of the ACM 120-25 (1983).

and forth entries of both Counter tables are
indistinguishable from one another other than by their
position in the table.

Figure 1: GEMS tables CandidateCounter and
SumCandidateCounter

These tables additionally attempt to avoid data
duplication via deployment of MS Access-specific
functions, a strategy which has proved to be
unreliable.24

Other 1NF Violations The design of a number
of other GEMS tables crucial to producing accurate
election results reports violate 1NF principles, with
flaws similar to those inventoried above. 25

2. Violations of 2NF

The GEMS DB design reveals little if no attempt

to conform to 2NF principles. GEMS lacks data
constraints that ensure data integrity,26 and omits
referential constraints that ensure data consistency.27
GEMS also replicates the same data throughout
numerous locations and tables.
 The most troubling violation of the 2NF involves
the duplication of data between two tables holding
vote tallies. In Figure 1, for instance, both
CandidateCounter and SumCandidateCounter tables
hold total vote data for a candidate -- which is
identified by the CandVGroupID column. This dual
depositing scheme for election results data can easily
generate update anomalies — otherwise known as
inconsistencies in election results data for a given
candidate and race. After an update anomaly has
occurred, it is impossible to rectify the inconsistency
without identifying when the anomaly occurred, or
starting again from the beginning point when data
processing began. If an election ended and the tables
held different numbers in each table, the question

25 The longer version of the paper contains this discussion. See note
2, above.
26 Data integrity constraints ensure the data type allowed is the
correct one for the field, such as only allowing positive integers for
a vote total field.
27 Foreign keys are not utilized correctly, if at all.

Exhibits to 5.10.17 Kemp letter Page 6

Page 4 of 7

becomes which vote total should be accepted as the
correct value.28

Eliminating the opportunity for these types of
anomalies is precisely the objective of 2NF. GEMS’s
design thus violates 2NF in tables essential to
producing accurate and consistent election results
reports.

Additional exemplars of GEMS’ departures from
2NF can be identified. DB architects use data integrity
constraints to ensure the type of data is correct for a
given field. These limits ensure a program cannot
input letters where numbers are expected or a negative
number where only positive numbers should be
allowed. The SumCandidateCounter table (see Figure
1), holding vote tally information, violates 2NF in
allowing negative values to be entered into the table.

VCenterId is the polling location where votes
were registered, and thus should always have a
positive value associated with it.29 A table that
permits incorrect negative values, such as Figure 2,
vitiates one identifier of DB corruption.

Reportunit

Id
VCenter

Id
Counter
GroupId

CandV
GroupId

Total
Votes

829 -1 0 1 246
829 -1 0 2 45
829 -1 0 3 231
829 -1 0 4 51
829 -1 0 5 252
829 -1 0 6 56
829 -1 0 7 230
829 -1 0 8 49
829 -1 0 9 231

Figure 2, Sample Data from GEMS SumCandidateCounter

Allowing negative values into the VCenter column
means tracking the origin of votes cannot occur30 and
the value ‘-1’ might, but does not necessarily, indicate
the table and/or DB is corrupted.31 Placing data
constraints upon the VCenter table would force the
values to remain positive integers.

Integrity constraints provide the foundation for
managing data that resides in several interrelated
tables. The election data management code within the

28 The Cuyahoga County (Ohio) Collaborative Public Audit (of the
November 8, 2006 General Election) Final Report, which was
issued after this paper had been drafted, mentions the inconsistent
tables containing election results data as a troubling feature for the
accuracy and reliability of its election data. See
http://urban.csuohio.edu/cei/public_monitor/cuyahoga_2006_audit_r
pt.pdf at 34-36 (April 19, 2007; hereafter Cuyahoga 2006 Election
Audit Report).
29 The VCenter table has ids ranging from 1 to 302. There is no
entry for -1.
30 Votes may not be able to be tracked at all if there are duplicate
entries for all values in the table.
31 Repeating values, such as the value “-1,” can indicate corruption
for some database engines such as Microsoft JET.

GEMS software lacks this essential foundation for
data accuracy. Although the GEMS software holds
some form of data management, without integrity
constraints it is only a matter of time before major
problems surface. While modifying the GEMS
architecture to include integrity constraints would not
completely solve the problem, it would assist in
ensuring data accuracy.

B. System Technology Flaws: Use of JET

 Microsoft’s Joint Engine Technology (JET) is a
basic DB engine32 technology that is appropriate for
personal computing and very small scale applications
requiring DB technology. Commercially known as
Microsoft Access®, JET is a file-sharing DB that can
support DBs with sizes up to 2 gigabytes.33 JET is
often considered ideal for small DB deployments with
very few concurrent user/processes,34 and can also be
used by custom programs to access the data through
the Microsoft Data Access Components Application
Programming Interface (MDAC API).
 But JET’s limitations have led Microsoft (MS)
to state that JET is inappropriate for systems that
require data integrity, security, and transaction logs
and rollbacks.35

Microsoft JET … was not intended (or architected)
for the high-stress performance required by 24x7
scenarios, ACID transactions, or unlimited users, that
is, scenarios where there has to be absolute data
integrity or very high concurrency.36

An election management system obviously requires
both “absolute data integrity” and in many urban
jurisdictions if not all, a “very high concurrency” of
users. Thus, the GEMS’ architects’ choice of
inexpensive JET as the DB engine places the entire
election tabulation process at very high risk.

32 A database engine is the underlying software that creates,
retrieves, updates, and deletes information from the database.
33Luke Chung & Dan Haught, When to Migrate from Microsoft
Access to Microsoft SQL Server, (2005) at
http://download.microsoft.com/download/5/d/0/5d026b60-e4be-
42fc-a250-2d75c49172bc/when_to_Migrate_from_Access.doc.
34 Concurrent users and processes are those attempting to use the
database at the same time. In the election tabulation context,
concurrent usage could include the uploading of election results
from scores of DRE units operating simultaneously, or from dozens
of optical scanners.
35 Microsoft Access or SQL Server: What’s Right in your
Organization?, (2005) at
http://www.microsoft.com/sql/solutions/migration/access/compare-
access.mspx
36 Using Microsoft JET with IIS, (Rev. 6.1 2007) at
http://support.microsoft.com/default.aspx/kb/222135.

Exhibits to 5.10.17 Kemp letter Page 7

Page 5 of 7

1. Capacity Limit of 2 Gigabytes

 GEMS exacerbates JET’s limitations and can

lead to DB failure. Its 2 gigabyte limit can easily be
exceeded in large turnout urban elections, especially
where central count scanning is utilized.37 If the
capacity limit is exceeded, database corruption is
highly probable.

2. Data Corruption During Normal
 Operation

As Microsoft documentation has stated:

When Microsoft JET is used in a multi-user
environment, multiple client processes are using file
read, write, and locking operations on a shared database.
Because multiple client processes are reading and
writing to the same database and because Jet does not
use a transaction log (as do the more advanced database
systems, such as SQL Server), it is not possible to
reliably prevent any and all database corruption.38

Because this is a file-locking DB system,39 the
operating system (Windows) could function as a
“user” that locks the DB file. Corruption of JET DBs
can occur from hardware conflicts from peripherals,40
software conflicts,41 multi-user access,42 and an overall
poor DB design.43

3. Multi-User Access Limitation
 Software systems that utilize a DB typically have
multiple clients or users that attempt to access the data
at the same time but the JET DB engine is not
designed to manage such simultaneous requests.

37A Microsoft spokesperson confirmed the Cuyahoga Audit
Committee’s finding that Microsoft recommended a different
system for operations as large as Cuyahoga County’s. See Bob
Driehaus, Audit Finds Many Faults in Cleveland’s ’06 Voting, N.Y.
Times Section A, Page 16 (April 20, 2007). The GEMS-JET
database can be compressed and backed up but each operation
introduces additional risks of database corruption.
38 How to Troubleshoot and to Repair a Damaged Access 2002 or
Later Database, (Rev. 6.1 2006) at
http://support.microsoft.com/default.aspx?scid=kb;en-us;283849
(emphasis added).; see also NY Times, note 37 above (“Scott
Massey, a Microsoft spokesman, said any file-based database was
subject to corruption if a connection was lost while a transfer was in
progress”); and Cuyahoga 2006 Audit Report at page 67, cited in
note 28 above.
39 When a process is accessing the database, it prevents all other
concurrent access. This “locks out” all other processes until the first
process has completed its tasks.
40 Hardware conflicts occur between hardware devices such as two
network cards in use on one machine.
41 Software conflicts occur between software programs both
accessing the database.
42 Multi-user access conflicts occur when multiple users are using
the same program, each accessing the database concurrently.
43 A poor design includes the lack of normalization described
previously within this paper.

Microsoft has recommended that fewer than ten clients
concurrently access the DB,44 but single users have
also created concurrency errors.45
 In a GEMS election tabulation, Windows can be
one of the processes accessing the DB. In Ohio,
during election tabulations the DB is monitored by
GEMS as well as a State-mandated security program,
DigitalGuardian (DG). Thus, at a minimum, in Ohio
GEMS is faced with mediating three potential
concurrent clients of the DB. In addition to these three
programs, during uploading and processing of election
data, GEMS is accessing the DB at a very high rate.
 Further, GEMS must mediate a large number of
concurrent data requests of the DB during election
tabulations. At some points, data is simultaneously
being uploaded to the DB from multiple sources (for
instance, 30 memory cards); snapshot election results
reports are requested (generating data analysis requests
from the DB); and software audit logging is
occurring (both Windows events logging and GEMS
audit logging).
 The context of election tabulations ineluctably
presents GEMS with a high rate of data concurrency
and throughput -- exactly the situation Microsoft has
warned can cause DB corruption in its Microsoft JET
technology. GEMS cannot be an exception to JET’s
core deficiencies. This constellation of issues raises
very serious questions on whether GEMS is capable of
managing and producing accurate election tabulations
and other data reports.

4. Microsoft Deprecation of JET
 Components

“Deprecation” is a term used by software

companies to notify end users and software developers
that a portion of a product line or Application
Programming Interface (API)46 will not be supported
in future releases. Microsoft has decided to deprecate
MS Data Access Components (MDAC); future
releases of JET will not include the MDAC

44 “Jet can support up to 255 concurrent users, but performance of
the file-based architecture can prevent its use for many concurrent
users. In general, it is best to use Jet for 10 or fewer concurrent
users.” Fitzgerald, James, Microsoft Data Engine (MSDE) for
Microsoft Visual Studio 6.0: An Alternative to Jet for Building
Desktop and Shared Solutions, (2002) at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnmsde/html/msdeforvs.asp
45 Single User Concurrency Issues with ADO and JET, (2001) at
http://support.microsoft.com/kb/216925/EN-US.
46 Application Programming Interfaces allow programmers to reuse
code, such as the code used to communicate to the JET database
engine. APIs allow programmers to use the functionality of
established code, such as the JET engine, without “reinventing the
wheel.”

Exhibits to 5.10.17 Kemp letter Page 8

Page 6 of 7

components.47 The GEMS software utilizes MDAC to
communicate with the JET DB engine.48

It remains unclear whether DESI was marketing
GEMS after MS published the deprecation notice yet
omitted disclosure of the point and its consequences to
prospective purchasers, election administrative
jurisdictions. Software that utilizes the JET MDAC
components, such as GEMS, will likely need to be re-
written to utilize a different DB technology, and
potentially at a high cost for any jurisdictions
transitioning to a new GEMS product.

II. Compliance with Federal Voting
 System Standards

 Section 222(e) of HAVA declared the 2002
Voting System Standards (VSS) to be HAVA’s first
set of voluntary voting system technical standards.
Via section 221, Congress authorized a Technical
Guidelines Development Committee (TGDC)49 to
develop recommendations for improvements to the
Voting System Standards of 2002,50 in the expansive
time frame of nine months. The TGDC’s 2005 prolix
recommendations address voting system performance
standards (Volume I) and testing standards (Volume
II).51 As a matter of federal law, the 2005 VSS remain
voluntary rather than compulsory on VS
manufacturers although some States have mandated
VS equipment be certified by federally approved
independent testing laboratories.
 Volume I of VSS 2005 incorporates much of the
early FEC standards from 2002.52 The new Security
section is written in highly technical language and
adds some substantial overdue protections for voting
systems technical security. But whatever its
improvements for security and other issues, Volume I
of the 2005 VSS omits a requirement that qualifying
election tabulation databases must satisfy 1NF and
2NF.53

47Microsoft has stated “Starting with version 2.6, MDAC no longer
contains Jet components. In other words, MDAC 2.6, 2.7, 2.8, and
all future MDAC releases do not contain Microsoft Jet, Microsoft
Jet OLE DB Provider, or the ODBC Desktop Database Drivers.”
Shirolkar, Prash, Data Access Technologies Roadmap, (2004) at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnmdac/html/data_mdacroadmap.asp
48 GEMS User’s Guide – Version 1.17.15, (Rev. 3, 2001) available
at http://freespeech.metacolo.com/pimaupgrade.zip.
49 42 U.S.C § 15361 (2006); the TGDC reports its
recommendations to the U.S. Election Assistance Commission.
50 42 U.S.C § 15361(b)(2) (2006).
51 Voluntary Voting System Guidelines Version 1: Initial Report,
(2005) at http://vote.nist.gov/VVSGVol1&2.pdf. (hereinafter VSS
2005).
52 The major new sections of this volume include the Human Factors
section and the Security section.
53 Volume I includes basic functions that an election DB must
manage, including “identify contests, candidates and issues”;
“define ballot formats and appropriate voting options”; “accumulate
vote totals at multiple reporting levels as indicated in the system

 But DB design issues fall easily within the scope
of voting systems (VS) technical standards and within
the TGDC expertise. If the TGDC is able to create
and develop detailed standards regarding highly
technical security concerns, it would appear also to
possess the regulatory scope and technical resources to
develop election tabulation DB design and
implementation standards.
 Volume II of the 2005 VSS is primarily
concerned with testing standards for the
“qualification” or certification process. It focuses
upon the specific details for Independent Testing
Authorities (ITAs, now renamed), vendors, and
election officials in the qualification process. Like
Volume I, Volume II also adopts and reaffirms a vast
amount of the 2002 VSS testing standards. The TGDC
significantly updated the standards, however, to
include changes to reflect the U.S. Election Assistance
Commission’s process for certification of voting
systems and HAVA’s usability and accessibility
requirements.
 In its description of VS testing requirements,
Volume II offers no new references regarding election
tabulation DB design specifications or testing
procedures. Thus, the DB testing standards remain as
they were in 2002 without specific requirements or
constraints on the designs for an effective and reliable
DB.

Volume II lists the documentation that must be
provided to the Independent Testing Authority
(“ITA”) before the election management software
(including tabulation functions) can be qualified. In
detailing the required vendor DB documentation, the
VSS provides the most specific standards for DB
design requirements.54 This Volume II section,
however, only requires substantial DB documentation
to be provided to the ITA if the specifically listed DB
design paradigms were utilized. Those vendors whose
DB designs are not reflected in specified paradigms–
and thus less likely to be soundly designed--are not
required to supply the additional DB documentation.
If a vendor chooses to design a DB using paradigms
such as entity relationships, or security and privacy
constraints, it then must submit substantial
documentation to the ITA.

The upshot of this regulatory approach is that the
VS vendor who offers a poorly designed tabulation
DB that can still meet the minimum requirements set
forth in Volume I, Section 2.2.6, can likely reach the
testing/certification phase faster than the vendor
seeking to market a better designed DB. Moreover,

documentation”; “generate the post-voting reports required by
Section 2.5” but omits any reference to satisfaction of fundamental
DB design requirements. See Vol. I of VSS 2005, section 2.2.6
(cited in note 46). Software standards found in Volume I, section 4,
similarly sidestep DB design precepts.
54 VSS 2005, Volume II, section 2.5.8 (see note 46).

Exhibits to 5.10.17 Kemp letter Page 9

Page 7 of 7

this low horizon vendor will experience substantially
lower costs for DB design and VSS required
documentation. More documentation requires a larger
financial investment for the vendor.

 The VSS 2005, and especially Volume II, section
2.5.8, therefore creates a disincentive for election
system vendors to design DBs that adhere to sound
well, established design paradigms. This incentive
runs exactly counter to the overwhelming public
interest in accurate and reliable election tabulations.
This regulatory inversion regarding DB design
standards suggests that the entire VSS 2005 should be
analyzed to identify other sections that may
inadvertently create incentives that undermine the
public interest in accurate, secure elections, and to
provide pointers for the next VSS revision.

Conclusion

The GEMS DB has not been designed to adhere to
fundamental normalization principles that can permit a
DB to reach high standards of accuracy and reliability.
But the federal regulatory apparatus has also failed, for
it imposes differential documentation requirements
and financial burdens on vendors seeking certification
for their election DB software. Those vendors who
attempt to achieve higher design standards face far
greater burdens and costs, including possibly more
delays, than vendors who settle for DB designs with
lower horizons. None of the 2005 VSS standards
constitute a mandatory federal floor for voting systems
to be deployed in federal elections. The certification
of the GEMS software notwithstanding the significant
demonstrable design flaws, offer a clear demonstration
of the inadequacy of the current certification regime.

Acknowledgements

The authors appreciate the significant assistance of
Andrew W. Appel, David Kettyle, George H. Taylor,
and David A. Wagner, and the advice of Aaron
Burstein and Joe Hall in preparing this paper. Errors
are the responsibility of the authors alone.

Exhibits to 5.10.17 Kemp letter Page 10

Security Analysis of the Diebold AccuVote-TS Voting Machine

Ariel J. Feldman*, J. Alex Halderman*, and Edward W. Felten*,†

*Center for Information Technology Policy and Dept. of Computer Science, Princeton University
†Woodrow Wilson School of Public and International Affairs, Princeton University

{ajfeldma,jhalderm,felten}@cs.princeton.edu

Abstract
This paper presents a fully independent security study

of a Diebold AccuVote-TS voting machine, including its
hardware and software. We obtained the machine from a
private party. Analysis of the machine, in light of real elec-
tion procedures, shows that it is vulnerable to extremely
serious attacks. For example, an attacker who gets physi-
cal access to a machine or its removable memory card for
as little as one minute could install malicious code; mali-
cious code on a machine could steal votes undetectably,
modifying all records, logs, and counters to be consis-
tent with the fraudulent vote count it creates. An attacker
could also create malicious code that spreads automati-
cally and silently from machine to machine during normal
election activities—a voting-machine virus. We have con-
structed working demonstrations of these attacks in our
lab. Mitigating these threats will require changes to the
voting machine’s hardware and software and the adoption
of more rigorous election procedures.

1 Introduction

The Diebold AccuVote-TS and its newer relative the
AccuVote-TSx are together the most widely deployed
electronic voting platform in the United States. In the
November 2006 general election, these machines were
used in 385 counties representing over 10% of registered
voters [12]. The majority of these counties—including
all of Maryland and Georgia—employed the AccuVote-
TS model. More than 33,000 of the TS machines are in
service nationwide [11].

This paper reports on our study of an AccuVote-TS,
which we obtained from a private party. We analyzed the
machine’s hardware and software, performed experiments
on it, and considered whether real election practices would
leave it suitably secure. We found that the machine is
vulnerable to a number of extremely serious attacks that
undermine the accuracy and credibility of the vote counts
it produces.

Figure 1: The Diebold AccuVote-TS voting machine

Computer scientists have been skeptical of voting sys-
tems of this type, Direct Recording Electronic (DRE),
which are essentially general-purpose computers running
specialized election software. Experience with computer
systems of all kinds shows that it is exceedingly difficult
to ensure the reliability and security of complex software
or to detect and diagnose problems when they do occur.
Yet DREs rely fundamentally on the correct and secure
operation of complex software programs. Simply put,
many computer scientists doubt that paperless DREs can
be made reliable and secure, and they expect that any
failures of such systems would likely go undetected.

Previous security studies of DREs affirm this skepti-
cism (e.g., [7, 18, 22, 30, 39]). Kohno, Stubblefield, Ru-
bin, and Wallach studied a leaked version of the source
code for parts of the Diebold AccuVote-TS software and
found many design errors and vulnerabilities [22]. Hursti
later examined the hardware and compiled firmware of
AccuVote-TS and TSx systems and discovered problems
with the software update mechanism that could allow ma-
licious parties to replace the programs that operate the

Exhibits to 5.10.17 Kemp letter Page 11

marilynmarks
Typewritten Text
 Exhibit C

machines [18]. Our study confirms these results by build-
ing working demonstrations of several previously reported
attacks, and it extends them by describing a variety of
serious new vulnerabilities.

Main Findings The main findings of our study are:

1. Malicious software running on a single voting ma-
chine can steal votes with little risk of detection. The
malicious software can modify all of the records, au-
dit logs, and counters kept by the voting machine,
so that even careful forensic examination of these
records will find nothing amiss. We have constructed
demonstration software that carries out this vote-
stealing attack.

2. Anyone who has physical access to a voting machine,
or to a memory card that will later be inserted into a
machine, can install said malicious software using a
simple method that takes as little as one minute. In
practice, poll workers and others often have unsuper-
vised access to the machines.

3. AccuVote-TS machines are susceptible to voting-
machine viruses—computer viruses that can spread
malicious software automatically and invisibly from
machine to machine during normal pre- and post-
election activity. We have constructed a demonstra-
tion virus that spreads in this way, installing our
demonstration vote-stealing program on every ma-
chine it infects. Our demonstration virus spreads via
the memory cards that poll workers use to transfer
ballots and election results, so it propagates even if
the machines are not networked.

4. While some of these problems can be eliminated
by improving Diebold’s software, others cannot be
remedied without replacing the machines’ hardware.
Changes to election procedures would also be re-
quired to ensure security.

The details of our analysis appear below, in the main body
of this paper.

Given our findings, we believe urgent action is needed
to address these problems. We discuss potential mitigation
strategies below in Section 5.

The machine we obtained came loaded with version
4.3.15 of the Diebold BallotStation software that runs the
machine during an election.1 This version was deployed
in 2002 and certified by the National Association of State
Election Directors (NASED) [15]. While some of the prob-
lems we identify in this report may have been remedied in
subsequent software releases (current versions are in the

1The behavior of our machine conformed almost exactly to the be-
havior specified by the source code to BallotStation version 4.3.1, which
leaked to the public in 2003.

4.6 series), others are architectural in nature and cannot
easily be repaired by software changes. In any case, subse-
quent versions of the software should be assumed insecure
until fully independent examination proves otherwise.

Though we studied a specific voting technology, we ex-
pect that a similar study of another DRE system, whether
from Diebold or another vendor, would raise similar con-
cerns about malicious code injection attacks and other
problems. We studied the Diebold system because we had
access to it, not because it is necessarily less secure than
competing DREs. All DREs face fundamental security
challenges that are not easily overcome.

Despite these problems, we believe that it is possible,
at reasonable cost, to build a DRE-based voting system—
including hardware, software, and election procedures—
that is suitably secure and reliable. Such a system would
require not only a voting machine designed with more care
and attention to security, but also an array of safeguards,
including a well-designed voter-verifiable paper audit trail
system, random audits and forensic analyses, and truly
independent security review.2

Outline The remainder of this paper is structured as fol-
lows. Section 2 describes several classes of attacks against
the AccuVote-TS machine as well as routes for injecting
malicious code. Section 3 discusses the machine’s design
and its operation in a typical election, focusing on design
mistakes that make attacks possible. Section 4 details our
implementation of demonstration attacks that illustrate the
security problems. Section 5 examines the feasibility of
several strategies for mitigating all of these problems. Sec-
tion 6 outlines prior research on the AccuVote system and
DREs more generally. Finally, Section 7 offers concluding
remarks.

2 Attack Scenarios

Elections that rely on Diebold DREs like the one we stud-
ied are vulnerable to several serious attacks. Many of these
vulnerabilities arise because the machine does not even
attempt to verify the authenticity of the code it executes.
In this section we describe two classes of attacks—vote
stealing and denial-of-service [20]—that involve injecting
malicious code into the voting machine. We then outline
several methods by which code can be injected and discuss
the difficulty of removing malicious code after a suspected
attack.

2Current testing agencies are often referred to as “independent testing
agencies” (ITAs), but “independent” is a misnomer, as they are paid by
and report to the voting machine vendor.

Exhibits to 5.10.17 Kemp letter Page 12

2.1 Classes of Attacks

2.1.1 Vote-Stealing Attacks

The AccuVote-TS machine we studied is vulnerable to
attacks that steal votes from one candidate and give them
to another. Such attacks can be carried out without leav-
ing any evidence of fraud in the system’s logs. We have
implemented a demonstration attack to prove that this is
possible; it is described in Section 4.2.

To avoid detection, a vote-stealing attack must transfer
votes from one candidate to another, leaving the total
number of votes unchanged so that poll workers do not
notice any discrepancy in the number of votes reported.
Attacks that only add votes or only subtract votes would
be detected when poll workers compared the total vote
count to the number of voters who signed in at the desk.3

The machine we studied maintains two records of each
vote—one in its internal flash memory and one on a re-
movable memory card. These records are encrypted, but
the encryption is not an effective barrier to a vote-stealing
attack because the encryption key is stored in the voting
machine’s memory where malicious software can easily
access it. Malicious software running on the machine
would modify both redundant copies of the record for
each vote it altered. Although the voting machine also
keeps various logs and counters that record a history of
the machine’s use, a successful vote-stealing attack would
modify these records so they were consistent with the
fraudulent history that the attacker was constructing. In
the Diebold DRE we studied, these records are stored in or-
dinary flash memory, so they are modifiable by malicious
software.

Such malicious software can be grafted into the Ballot-
Station election software (by modifying and recompiling
BallotStation if the attacker has the BallotStation source
code, or by modifying the BallotStation binary), it can
be delivered as a separate program that runs at the same
time as BallotStation, it can be grafted into the operating
system or bootloader, or it can occupy a virtualized layer
below the bootloader and operating system [21]. The ma-
chine contains no security mechanisms that would detect a
well designed attack using any of these methods. However
it is packaged, the attack software can modify each vote as
it is cast, or it can wait and rewrite the machine’s records
later, as long as the modifications are made before the
election is completed.

The attack code might be constructed to modify the ma-
chine’s state only when the machine is in election mode
and avoid modifying the state when the machine is per-

3It might be possible to subtract a few votes without detection (if poll
workers interpret the missing votes as voters who did not vote in that
race) or to add a few votes to compensate for real voters who did not cast
ballots; but in any case transferring votes from one candidate to another
is a more effective attack.

forming other functions such as pre-election logic and
accuracy testing. The code could also be programmed to
operate only on election days. (Elections are often held
according to a well-known schedule—for example, U.S.
presidential and congressional elections are held on the
Tuesday following the first Monday of November, in even-
numbered years.) Alternatively, it could be programmed
to operate only on certain election days, or only at certain
times of day.

By these methods, malicious code installed by an adver-
sary could steal votes with little chance of being detected
by election officials.4 Vote counts would add up correctly,
the total number of votes recorded on the machine would
be correct, and the machine’s logs and counters would be
consistent with the results reported—but the results would
be fraudulent.

2.1.2 Denial-of-Service Attacks

Denial-of-service (DoS) attacks aim to make voting ma-
chines unavailable on election day or to deny officials ac-
cess to the vote tallies when the election ends [20, 28, 3].
It is often known in advance that voters at certain precincts,
or at certain times, will vote disproportionately for one
party or candidate. A targeted DoS attack can be designed
to distort election results or to spoil an election that ap-
pears to be favoring one party or candidate. Several kinds
of DoS attacks are practical on the AccuVote-TS system
because of the ease with which malicious code may be
executed.

One style of DoS attack would make voting machines
unavailable on election day. For example, malicious code
could be programmed to make the machine crash or mal-
function at a pre-programmed time, perhaps only in cer-
tain polling places. In an extreme example, an attack
could strike on election day, perhaps late in the day, and
completely wipe out the state of the machine by erasing
its flash memory. This would destroy all records of the
election in progress, as well as the bootloader, operating
system, and election software. The machine would refuse
to boot or otherwise function. The machine would need
to be serviced by a technician to return it to a working
state. If many machines failed at once, available techni-
cians would be overwhelmed. Even if the machines were
repaired, all records of the current election would be lost.
(We have created a demonstration version of this attack,
which is described below in Section 4.4.) A similar style
of DoS attack would try to spoil an election by modifying
the machine’s vote counts or logs in a manner that would
be easy to detect but impossible to correct, such as adding
or removing so many votes that the resulting totals would

4Officials might try to detect such an attack by parallel testing. As
we describe in Section 5.3, an attacker has various countermeasures to
limit the effectiveness of such testing.

Exhibits to 5.10.17 Kemp letter Page 13

be obviously wrong. A widespread DoS attack of either
style could require the election to be redone.

2.2 Injecting Attack Code

To carry out these attacks, the attacker must somehow
install his malicious software on one or more voting ma-
chines. If he can get physical access to a machine for
as little as one minute, he can use attacks discovered by
Hursti [18] to install the software manually. The attacker
can also install a voting machine virus that spreads to other
machines, allowing him to commit widespread fraud even
if he only has physical access to one machine or memory
card.

2.2.1 Direct Installation

An attacker with physical access to a machine would have
at least three methods of installing malicious software.
The first is to create an EPROM chip containing a program
that will install the attack code into the machine’s flash
memory, and then to open the machine, install the chip on
its motherboard, and reboot from the EPROM.5

The second method is to exploit a back door feature in
Diebold’s code, first discovered by Hursti. This method al-
lows the attacker to manually install attack software from a
memory card. When the machine boots, it checks whether
a file named explorer.glb exists on the removable
memory card. If such a file is present, the machine boots
into Windows Explorer rather than Diebold’s BallotSta-
tion election software. An attacker could insert a memory
card containing this file, reboot the machine, and then use
Explorer to copy the attack files onto the machine or run
them directly from the card. [18]

The third method exploits a service feature of the ma-
chine’s bootloader, also discovered by Hursti. On startup,
the machine checks the removable memory card for a
file named fboot.nb0. If this file exists, the machine
replaces the bootloader code in its on-board flash mem-
ory with the file’s contents. An attacker could program
a malicious bootloader, store it on a memory card as
fboot.nb0, and reboot the machine with this card in-
serted, causing the Diebold bootloader to install the ma-
licious software [18]. (A similar method would create a
malicious operating system image.)

The first method requires the attacker to remove several
screws and lift off the top of the machine to get access to
the motherboard and EPROM. The other methods only
require access to the memory card slot and power button,
which are both behind a locked door on the side of the

5When the machine is rebooted, it normally emits a musical chime
that might be noticed during a stealth attack; but this sound can be
suppressed by plugging headphones (or just a headphone connector) into
the machine’s headphone jack.

machine.6 The lock is easily picked—one member of our
group, who has modest locksmithing skills, can pick the
lock consistently in less than 10 seconds. Moreover, in
their default configuration, all AccuVote-TS machines can
be opened with the same key [4], and copies of this key are
not difficult to obtain. The particular model of key that the
AccuVote-TS uses is identified by an alphanumeric code
printed on the key. A Web search for this code reveals that
this exact key is used widely in office furniture, jukeboxes,
and hotel mini bars, and is for sale at many online retailers.
We purchased copies of the key from several sources and
confirmed that they all can open the machine.

A poll worker, election official, technician, or other
person who had private access to a machine for as little
as one minute could use these methods with little risk
of detection. Poll workers often do have such access;
for instance, in a widespread practice called “sleepovers,”
machines are sent home with poll workers the night before
the election [35].

2.2.2 Voting Machine Viruses

Rather than injecting code into each machine directly, an
attacker could create a computer virus that would spread
from one voting machine to another. Once installed on a
single “seed” machine, the virus would spread to other ma-
chines by methods described below, allowing an attacker
with physical access to one machine (or card) to infect a
potentially large population of machines. The virus could
be programmed to install malicious software, such as a
vote-stealing program or denial-of-service attack, on every
machine it infected.

To prove that this is possible, we constructed a demon-
stration virus that spreads itself automatically from ma-
chine to machine, installing our demonstration vote-
stealing software on each infected system. Our demonstra-
tion virus, described in Section 4.3, can infect machines
and memory cards. An infected machine will infect any
memory card that is inserted into it. An infected mem-
ory card will infect any machine that is powered up or
rebooted with the memory card inserted. Because cards
are transferred between machines during vote counting
and administrative activities, the infected population will
grow over time.

Diebold delivers software upgrades to the machines
via memory cards: a technician inserts a memory card
containing the updated code and then reboots the machine,
causing the machine’s bootloader to install the new code
from the memory card. This upgrade method relies on the
correct functioning of the bootloader, which is supposed
to copy the upgraded code from the memory card into
the machine’s flash memory. But if the bootloader is

6The locked door must be opened in order to remove one of the
screws holding the machine’s top on.

Exhibits to 5.10.17 Kemp letter Page 14

already infected by a virus, then the virus can make the
bootloader behave differently. For example, the bootloader
could pretend to install the updates as expected but instead
secretly propagate the virus onto the memory card. If the
technician later used the same memory card to “upgrade”
other machines, he would in fact be installing the virus on
them. Our demonstration virus illustrates these spreading
techniques.

Memory cards are also transferred between machines
in the process of transmitting election definition files to
voting machines before an election. According to Diebold,
“Data is downloaded onto the [memory] cards using a few
[AccuVote] units, and then the stacks of [memory] cards
are inserted into the thousands of [AccuVote] terminals
to be sent to the polling places.” ([10], p. 13) If one of
the few units that download the data is infected, it will
transfer the infection via the “stacks of [memory] cards”
into many voting machines.

2.3 Difficulty of Recovery

If a voting machine has been infected with malicious code,
or even if infection is suspected, it is necessary to dis-
infect the machine. The only safe way to do this is to
put the machine back into a known-safe state, by, for ex-
ample, overwriting all of its stable storage with a known
configuration.

This is difficult to do reliably. We cannot depend on
the normal method for installing firmware upgrades from
memory cards, because this method relies on the correct
functioning of the bootloader, which might have been
tampered with by an attacker. There is no foolproof way
to tell whether an update presented in this way really has
been installed safely.

The only assured way to revert the machine to a safe
state is to boot from EPROM using the procedure de-
scribed in Section 3. This involves making an EPROM
chip containing an update tool, inserting the EPROM chip
into the motherboard, setting the machine to boot from the
chip, and powering it on. On boot, the EPROM-based up-
dater would overwrite the on-board flash memory, restor-
ing the machine to a known state. Since this process
involves the insertion (and later removal) of a chip, it
would probably require a service technician to visit each
machine.

If the disinfection process only reinstalled the software
that was currently supposed to be running on the machines,
then the possibility of infection by malicious code would
persist. Instead, the voting machine software software
should be modified to defend against installation and viral
spreading of unauthorized code. We discuss in Section 5
what software changes are possible and which attacks can
be prevented.

3 Design and Operation of the Machine

Before presenting the demonstration attacks we imple-
mented, we will first describe the design and operation of
the AccuVote-TS machine and point out design choices
that have led to vulnerabilities.

3.1 Hardware

The machine (shown in Figure 1) interacts with the user
via an integrated touchscreen LCD display. It authenti-
cates voters and election officials using a motorized smart
card reader, which pulls in cards after they are inserted
and ejects them when commanded by software. On the
right side of the machine is a headphone jack and key-
pad port for use by voters with disabilities, and a small
metal door with a lightweight lock of a variety commonly
used in desk drawers and file cabinets. Behind this door
is the machine’s power switch, a keyboard port, and two
PC Card slots, one containing a removable flash memory
card and the other optionally containing a modem card
used to transfer ballot definitions and election results. The
machine is also equipped with a small thermal roll printer
for printing records of initial and final vote tallies.

Internally, the machine’s hardware closely resembles
that of a laptop PC or a Windows CE hand-held device.
The motherboard, shown in Figure 2, includes a 133 MHz
SH-3 RISC processor, 32 MB of RAM, and 16 MB of
flash storage. The machine’s power supply can switch to a
built-in rechargeable battery in case power is interrupted.

In normal operation, when the machine is switched
on, it loads a small bootloader program from its on-board
flash memory. The bootloader loads the operating system—
Windows CE 3.0—from flash, and then Windows starts the
Diebold BallotStation application, which runs the election.
Unfortunately, the design allows an attacker with physical
access to the inside of the machine’s case to force it to run
code of her choice [29].

A set of two switches and two jumpers on the moth-
erboard controls the source of the bootloader code that
the machine runs when it starts. On reset, the processor
begins executing at address 0xA0000000. The switches
and jumpers control which of three storage devices—the
on-board flash memory, an EPROM chip in a socket on
the board, or a proprietary flash memory module in the
“ext flash” slot—is mapped into that address range. A table
printed on the board lists the switch and jumper configu-
rations for selecting these devices. The capability to boot
from a removable EPROM or flash module is useful for
initializing the on-board flash when the machine is new or
for restoring the on-board flash’s state if it gets corrupted,
but, as we discussed in Section 2, it could also be used by
an attacker to install malicious code.

When we received the machine, the EPROM socket was

Exhibits to 5.10.17 Kemp letter Page 15

Figure 2: The AccuVote-TS motherboard incorporates a (A) HITACHI SUPERH SH7709A 133 MHZ RISC MICRO-
PROCESSOR, (B) HITACHI HD64465 WINDOWS CE INTELLIGENT PERIPHERAL CONTROLLER, two (C) INTEL
STRATA-FLASH 28F640 8 MB FLASH MEMORY CHIPS, two (D) TOSHIBA TC59SM716FT 16 MB SDRAM
CHIPS, and a socketed (E) M27C1001 128 KB ERASABLE PROGRAMMABLE READ-ONLY MEMORY (EPROM). A
(F) PRINTED TABLE lists jumper settings for selecting the boot device from among the EPROM, on-board flash, or “ext
flash,” presumably an external memory inserted in the (G) “FLASH EXT” SLOT.

Connectors on the motherboard attach to the (H) TOUCH SENSITIVE LCD PANEL, (I) THERMAL ROLL PRINTER, and
(J) SECURETECH ST-20F SMART CARD READER/WRITER, and receive power from the (K) POWER SUPPLY and
(L) BATTERY, which are managed by a (M) PIC MICROCONTROLLER. An (N) IRDA TRANSMITTER AND RECEIVER,
(O) SERIAL KEYPAD CONNECTOR, and (P) HEADPHONE JACK are accessible through holes in the machine’s case. A
(Q) POWER SWITCH, (R) PS/2 KEYBOARD PORT, and two (S) PC CARD SLOTS can be reached by opening a locked
metal door, while a (T) RESET SWITCH and (U) PS/2 MOUSE PORT are not exposed at all. An (V) INTERNAL SPEAKER
is audible through the case.

Exhibits to 5.10.17 Kemp letter Page 16

occupied by a 128 KB EPROM containing a bootloader
that was older than, but similar to, the bootloader located
in the on-board flash. The bootloader contained in the
EPROM displays a build date of June 22, 2001 whereas
the bootloader contained in the on-board flash displays
June 7, 2002. The machine came configured to boot using
the on-board flash memory. On our machine, the on-
board flash memory is divided into three areas: a 128 KB
bootloader, a 3.3 MB GZIP-ed operating system image,
and a 10 MB file system partition.

3.2 Boot Process

When the machine is booted, the bootloader copies itself
to RAM and initializes the hardware. Then it looks for a
memory card in the first PC Card slot, and if one is present,
it searches for files on the card with special names. If it
finds a file called fboot.nb0, it assumes that this file
contains a replacement bootloader, and it copies the con-
tents of this file to the bootloader area of the on-board flash
memory, overwriting the current bootloader. If it finds a
file called nk.bin, it assumes that this file contains a re-
placement operating system image in Windows CE Binary
Image Data Format [27], and it copies it to the OS area
of the on-board flash, overwriting the current OS image.
Finally, if it finds a file called EraseFFX.bsq, it erases
the entire file system area of the flash. The bootloader
does not verify the authenticity of any of these files in any
way, nor does it ask the user to confirm any of the changes.
As Hursti [18] suggests, these mechanisms can be used to
install malicious code.

If none of these files are present, the bootloader pro-
ceeds to uncompress the operating system image stored in
on-board flash and copy it to RAM, then it jumps to the
entry point of the operating system kernel. The operating
system image is a kind of archive file that contains an
entire Windows CE 3.0 installation, including the kernel’s
code, the contents of the Windows directory, the initial
contents of the Windows registry, and information about
how to configure the machine’s file system.

When Windows starts, the kernel runs the process
Filesys.exe, which in turn unpacks the registry
and runs the programs listed in the HKEY_LOCAL_
MACHINE\Init registry key [26]. On our machine,
these programs are the Debug Shell shell.exe, the De-
vice Manager device.exe, the Graphics, Windowing,
and Events Subsystem gwes.exe, and the Task Manager
taskman.exe. This appears to be a standard registry
configuration [25].

The Device Manager is responsible for mounting the
file systems. The 10MB file system partition on the on-
board flash is mounted at \FFX. This partition appears
to use the FlashFX file system, a proprietary file system
from Datalight, Inc [8]. The memory card, if it is present,

is mounted at \Storage Card, and may use the FAT
or FAT32 file system. The root file system, mounted at \,
is stored in RAM rather than nonvolatile memory, which
causes any files written to it to disappear when the machine
is rebooted or otherwise loses power. This design could be
leveraged by an attacker who wished to use the file system
for temporarily storing data or malicious code without
leaving evidence of these activities.

Diebold has customized taskman.exe so that it au-
tomatically launches the BallotStation application, \FFX\
Bin\BallotStation.exe. Another customization
causes taskman.exe to behave differently depend-
ing on the contents of any memory cards in the PC
Card slots. If a memory card containing a file called
explorer.glb is present at start-up, taskman.exe
will invoke Windows Explorer instead of BallotStation.
Windows Explorer would give an attacker access to the
Windows Start menu, control panels, and file system, as on
an ordinary Windows CE machine. The, taskman.exe
process also searches the memory card for files with names
ending in .ins [18]. These files are simple scripts in
a Diebold-proprietary binary format that automate the
process of updating and copying files. Like the spe-
cial files that the bootloader recognizes, taskman.exe
accepts explorer.glb without authentication of any
kind. While taskman.exe requests confirmation from
the user before running each .ins script, we found multi-
ple stack-based buffer overflows in its handling of these
files. This suggests that a malformed .ins file might be
able to bypass the confirmation and cause the machine to
execute malicious code.

3.3 Software and Election Procedures

All of the machine’s voting-related functions are imple-
mented by BallotStation, a user-space Windows CE ap-
plication. BallotStation operates in one of four modes:
Pre-Download, Pre-Election Testing, Election, and Post-
Election. Each corresponds to a different phase of the
election process. Here we describe the software’s opera-
tion under typical election procedures. Our understand-
ing of election procedures is drawn from a number of
sources [34, 13, 36, 40] and discussions with election
workers from several states. Actual procedures vary some-
what from place to place, and many polling places add
additional steps to deal with multiple voter populations
(e.g., different parties or electoral districts) and other com-
plicating factors. We omit these details in our description,
but we have considered them in our analysis and, except
where noted below, they do not affect the results.

At any given time, the machine’s mode is determined
by the contents of the currently-inserted memory card.
Specifically, the current election mode is stored in the
header of the election results file, \Storage Card\

Exhibits to 5.10.17 Kemp letter Page 17

CurrentElection\election.brs. When one
memory card is removed and another is inserted, the ma-
chine immediately transitions to the mode specified by the
card. In addition, if the machine is rebooted, when Bal-
lotStation restarts it will return to the mode specified by
the current card. As a result, if a machine is powered off
while an election is taking place, it will return to Election
mode when it is turned back on.

3.3.1 Election Setup

Typically, the voting machines are stored by the local gov-
ernment or the voting machine vendor in a facility with
some degree of access control. Before the election (some-
times the night before, or in other cases the same morn-
ing) the machines are delivered to polling places where
they are set up and prepared by poll workers. Prior to
the election, poll workers may configure BallotStation by
inserting a memory card containing a ballot description—
essentially, a list of races and candidates for the current
election. If, instead, a card containing no recognizable
election data is inserted into the machine, BallotStation
enters Pre-Download mode. In this mode, the machine can
download a ballot definition by connecting to a Windows
PC running Diebold’s GEMS server software.

After election definitions have been installed, Ballot-
Station enters Pre-Election Testing mode. Among other
functions, Pre-Election Testing mode allows poll workers
to perform so-called “logic and accuracy” (L&A) testing.
During L&A testing, poll workers put the machine into a
simulation mode where they can cast several test votes and
then tally them, checking that the tally is correct. These
votes are not counted in the actual election.

After any L&A testing is complete, the poll workers
put the machine into Election mode. The software prints
a “zero tape” which tallies the votes cast so far. Since
no votes have been cast, all tallies should be zero. Poll
workers check that this is the case and then sign the zero
tape and save it.

3.3.2 Voting

When a voter arrives at the polling place, she checks in at
the front desk, where poll workers give her a “voter card,”
a special smart card that signifies that she is entitled to
cast a vote.7 The voter inserts her voter card into a voting
machine, which validates the card. The machine then
presents a user interface that allows the voter to express
her vote by selecting candidates and answering questions.
After making and confirming her selections, the voter
pushes a button on the user interface to cast her vote. The

7Kohno et al. found numerous vulnerabilities and design flaws in
BallotStation’s smart card authentication scheme [22], which remain
uncorrected in the machine we studied.

machine modifies the voter card, marking it as invalid, and
then ejects it. After leaving the machine, the voter returns
the now-invalid voter card to the poll workers, who may
re-enable it for use by another voter.

3.3.3 Post-Election Activities

At the end of the election, poll workers insert an “Ender
Card” to tell the voting software to stop the election and
enter Post-Election Mode.8 Poll workers can then use the
machine to print a “result tape” showing the final vote
tallies. The poll workers check that the total number of
votes cast is consistent with the number of voters who
checked in at the front desk. Assuming no discrepancy,
the poll workers sign the result tape and save it.

After the result tape is printed, the election results
are transferred to the central tabulator, a PC running the
GEMS software. Like the ballot definitions, the election
results may be transferred over a local area network, a
phone line, or a serial cable. Once results from all ma-
chines have reached the central tabulator, the tabulator can
add up the votes and report a result for the election.

For convenience, it is also possible to “accumulate” the
results from several machines into a single AccuVote-TS
voting machine, which can then transmit the accumulated
results to the central tabulator in a single step. To accu-
mulate results, one machine is put into accumulator mode,
and then the memory cards from other machines are in-
serted (in sequence) into the accumulator machine, which
reads the election results and combines them into a single
file that will be transferred to the central tabulator or used
as an input to further accumulation steps.

If a recount is ordered, the result tapes are rechecked
for consistency with voter check-in data, the result tapes
are checked for consistency with the results stored on the
memory cards, and the tabulator is used again to sum up
the results on the memory cards. Further investigation may
examine the state stored on memory cards and a machine’s
on-board file system, such as the machine’s logs, to look
for problems or inconsistencies.

4 Implementing Demonstration Attacks

To confirm our understanding of the vulnerabilities in
the Diebold AccuVote-TS system, and to demonstrate the
severity of the attacks that they allow, we constructed
demonstration implementations of several of the attacks
described above and tested them on the machine. We
are not releasing the software code for our demonstration
attacks to the public at present; however, a video showing

8They can also use a “Supervisor Card” for this purpose. Supervisor
cards enable access to extra setup and administrative operations in pre-
and post-election modes.

Exhibits to 5.10.17 Kemp letter Page 18

Donna Price
Highlight
3.3.1 Election SetupTypically, the voting machines are stored by the local governmentor the voting machine vendor in a facility withsome degree of access control. Before the election (sometimesthe night before, or in other cases the same morning)the machines are delivered to polling places wherethey are set up and prepared by poll workers. Prior tothe election, poll workers may configure BallotStation byinserting a memory card containing a ballot description—essentially, a list of races and candidates for the currentelection. If, instead, a card containing no recognizableelection data is inserted into the machine, BallotStationenters Pre-Download mode. In this mode, the machine candownload a ballot definition by connecting to a WindowsPC running Diebold’s GEMS server software.After election definitions have been installed, Ballot-Station enters Pre-Election Testing mode. Among otherfunctions, Pre-Election Testing mode allows poll workersto perform so-called “logic and accuracy” (L&A) testing.During L&A testing, poll workers put the machine into asimulation mode where they can cast several test votes andthen tally them, checking that the tally is correct. Thesevotes are not counted in the actual election.After any L&A testing is complete, the poll workersput the machine into Election mode. The software printsa “zero tape” which tallies the votes cast so far. Sinceno votes have been cast, all tallies should be zero. Pollworkers check that this is the case and then sign the zerotape and save it.

some of our demonstration attacks in operation is available
online at http://itpolicy.princeton.edu/voting.

4.1 Backup and Restore
As a prerequisite to further testing, we developed a method
for backing up and restoring the complete contents of the
machine’s on-board flash memory. This allowed us to per-
form experiments and develop other demonstration attacks
without worrying about rendering the machine inoperable,
and it ensured that we could later restore the machine to
its initial state for further testing and demonstrations.

We began by extracting the EPROM chip from its socket
on the motherboard and reading its 128 KB contents with
a universal EPROM programmer. We then disassembled
the bootloader contained on the chip using IDA Pro Ad-
vanced [9], which supports the SH-3 instruction set. Next,
we created a patched version of the EPROM bootloader
that searches any memory card9 in the first PC Card slot
for files named backup.cmd and flash.img. If it
finds a file named backup.cmd, it writes the contents
of the on-board flash to the first 16 MB of the memory
card, and if it finds a file named flash.img, it replaces
the contents of the on-board flash with the contents of that
file. We programmed our modified bootloader into a new,
standard, 128 KB EPROM chip and inserted it into the
motherboard in place of the original chip. We configured
the machine to boot using the code in the chip instead of
the normal bootloader in its on-board flash memory, as
described in Section 3.

4.2 Stealing Votes
Several of the demonstration attacks that we have imple-
mented involve installing code onto AccuVote-TS ma-
chines that changes votes so that, for a given race, a fa-
vored candidate receives a specified percentage of the
votes cast on each affected machine. Since any attacks
that significantly alter the total number of votes cast can
be detected by election officials, our demonstration soft-
ware steals votes at random from other candidates in the
same race and gives them to the favored candidate. The
software switches enough votes to ensure that the favored
candidate receives at least the desired percentage of the
votes cast on each compromised voting machine.

Election results (i.e., the record of votes cast) are stored
in files that can be modified by any program running on
the voting machine. The primary copy of the election
results is stored on the memory card at \Storage
Card\CurrentElection\election.brs
and a backup copy is stored in the machine’s on-board

9While Diebold sells special-purpose memory cards for use in the
machine, we were able to substitute a CompactFlash card (typically used
in digital cameras) and a CompactFlash-to-PC Card adapter.

flash memory at \FFX\AccuVote-TS
\BallotStation\CurrentElection\
election.brs. Our software modifies both of
these files.

Our demonstration vote-stealing software is imple-
mented as a user-space Windows CE application writ-
ten in C++ that runs alongside Diebold’s BallotStation
application. Since our software runs invisibly in the back-
ground, ordinary users of BallotStation would not notice
its presence. It is pre-programmed with three parameters
hard-coded into the binary: the name of the race to rig,
the name of the candidate who is supposed to win, and the
minimum percentage of the vote that that candidate is to
receive.

Alternatively, an attacker could create a graphical user
interface that allows more immediate, interactive control
over how votes would be stolen. We have also created a
demonstration of this kind of attack. In practice, a real
attacker would more likely design a vote-stealing program
that functioned invisibly, without a user interface.

Our demonstration vote-stealing applications can be
generalized to steal votes on behalf of a particular party
rather than a fixed candidate, to steal votes only in certain
elections or only at certain dates or times, to steal votes
only or preferentially from certain parties or candidates, to
steal a fixed fraction of votes rather than trying to ensure
a fixed percentage result, to randomize the percentage of
votes stolen, and so on. Even if the attacker knows nothing
about the candidates or parties, he may know that he wants
to reduce the influence of voters in certain places. He can
do this by creating malicious code that randomly switches
a percentage of the votes, and installing that code only
in those places. Any desired algorithm can be used to
determine which votes to steal and to which candidate or
candidates to transfer the stolen votes.

Every time a new memory card is inserted into the
machine, our demonstration vote-stealing software looks
for an election definition file on the card located at
\Storage Card\CurrentElection\election.
edb and, if one is present, determines whether the current
election contains a race it is supposed to rig. If no such
race is found, the software continues to wait. If a target
race is found, it searches that race for the name of the
favored candidate. Upon finding that the preferred can-
didate is on the ballot, the software proceeds to poll the
election result files every 15 seconds to see if they have
been changed.

If the demonstration vote-stealing software successfully
opens the result files during one of its polling attempts,
it first checks the result files’ headers to see whether the
machine is in Election mode. If not, the attack software
does not change any votes. This feature ensures that the
software would not be detected during Logic and Accuracy
testing, which occurs when the machine is in Pre-Election

Exhibits to 5.10.17 Kemp letter Page 19

Donna Price
Highlight
This feature ensures that thesoftware would not be detected during Logic and Accuracytesting, which occurs when the machine is in Pre-Election

Testing mode. The software could be further enhanced so
that it would only change votes during a specified period
on election day, or so that it would only change votes in the
presence or absence of a “secret knock.” A secret knock is
a distinctive sequence of actions, such as touching certain
places on the screen, that an attacker executes in order to
signal malicious software to activate or deactivate itself.

If the machine is in election mode and the demonstra-
tion vote-stealing software successfully opens the result
files, then the software checks whether any new ballots
have been cast since the last time it polled the files. For
each new ballot cast, the software determines whether the
race being rigged is on that ballot, and if so, determines
whether the corresponding result record contains a vote
for the favored candidate or for an opponent. The software
maintains a data structure that keeps track of the location
of every result record that contains a vote for an opponent
of the favored candidate so that it can come back later and
change some of those records if necessary. Since each re-
sult record is only labeled with the ID number of the ballot
to which it corresponds, the software must look up each
record’s ballot ID in the election definition file in order to
determine which candidates the votes in the record are for.

Once it has parsed any newly cast ballots, the software
switches the minimum number of votes necessary to en-
sure that the favored candidate gets at least the desired
percentage of the vote. The vote-stealing software chooses
which votes to switch by selecting entries at random from
its data structure that tracks votes for the opponents of
the favored candidate. After the necessary changes have
been made to the result files, the software closes the files,
resumes the BallotStation process, and continues to wait
in the background.

The steps described above are all that is necessary to
alter every electronic record of the voters’ intent that an
AccuVote-TS machine produces. Several of the machine’s
supposed security features do not impede this attack. The
so-called “protective counter,” supposedly an unalterable
count of the total number of ballots ever cast on the ma-
chine, is irrelevant to this attack because the vote-stealing
software does not change the vote count.10 The machine’s
audit logs are equally irrelevant to this attack because
the only record they contain of each ballot cast is the log
message “Ballot cast.” Furthermore, the fact that election
results are stored redundantly in two locations is not an
impediment because the vote-stealing software can mod-
ify both copies. Finally, as discussed in Section 2, the fact
that the election results are encrypted does not foil this
attack.

10In any event, the “protective counter” is simply an integer stored
in an ordinary file, so an attack that needed to modify it could do so
easily [22].

4.3 Demonstration Voting Machine Virus

In addition to our demonstration vote-stealing attacks, we
have developed a voting machine virus that spreads the
vote-stealing code automatically and silently from ma-
chine to machine. The virus propagates via the removable
memory cards that are used to store the election defini-
tion files and election results, and for delivering firmware
updates to the machines. It exploits the fact, discovered
by Hursti [18], that when the machine boots, the Diebold
bootloader will install any code found on the removable
memory card in a file with the special name fboot.nb0.
As a result, an attacker could infect a large population of
machines while only having temporary physical access to
a single machine or memory card.

Our demonstration virus takes the form of a malicious
bootloader that infects a host voting machine by replacing
the existing bootloader in the machine’s on-board flash
memory. Once installed, the virus deploys our demon-
stration vote-stealing software and copies itself to every
memory card that is inserted into the infected machine.
If those cards are inserted into other machines, those ma-
chines can become infected as well.

The cycle of infection proceeds as follows. When the
virus is carried on a memory card, it resides in a 128 KB
bootloader image file named fboot.nb0. This file con-
tains both the malicious replacement bootloader code and
a Windows CE executable application that implements the
demonstration vote-stealing application. The vote-stealing
executable is stored in a 50 KB region of the bootloader
file that would normally be unused and filled with zeroes.

When a card carrying the virus is inserted into a voting
machine and the machine is switched on or rebooted, the
machine’s existing bootloader interprets the fboot.nb0
file as a bootloader update and copies the contents of
the file into its on-board flash memory, replacing the ex-
isting bootloader with the malicious one. The original
bootloader does not ask for confirmation before replacing
itself. It does display a brief status message, but this is
interspersed with other normal messages displayed during
boot. These messages are visible for less than 20 seconds
and are displayed in small print at a 90 degree angle to the
viewer. After the boot messages disappear, nothing out of
the ordinary ever appears on the screen.

Once a newly infected host is rebooted, the virus boot-
loader is in control. Since the bootloader is the first code
that runs on the machine, a virus bootloader is in a position
to affect all aspects of system operation. While booting,
the virus bootloader, like the ordinary bootloader, checks
for the presence of a memory card in the first PC Card
slot. However, if it finds a bootloader software update on
the card, it pretends to perform a bootloader update by
printing out the appropriate messages, but actually does

Exhibits to 5.10.17 Kemp letter Page 20

nothing.11 Thus, once a machine has been infected, the
only way to remove the virus bootloader is to restore the
machine’s state using an EPROM-resident bootloader.

If a memory card is present, the virus bootloader copies
itself to the card as a file named fboot.nb0 so that it
can spread to other machines. If the card already contains
a file with that name, the bootloader replaces it. Con-
sequently, if a service technician performing bootloader
updates tries to update an infected machine using a card
containing an fboot.nb0 file, the infected machine will
not be updated (although it will pretend to be), and all sub-
sequent machines that the technician tries to update using
the same card will receive the virus bootloader instead of
the updated one. Similarly, updates to the BallotStation
software or operating system can also propagate the virus.

The malicious bootloader also copies the vote-stealing
executable to the memory card as a file named AV.EXE.
Then, immediately before starting Windows, the virus
bootloader scans the region of RAM occupied by the op-
erating system image (0x8C080000–0x8C67FFFF) for
the hard-coded string in the taskman.exe binary
that points to the BallotStation executable \FFX\Bin\
BallotStation.exe and replaces it with \Storage
Card\AV.EXE. Consequently, when Windows starts,
taskman.exe will launch the demonstration vote-
stealing application instead of BallotStation.

When the demonstration vote-stealing application on
the memory card starts, it first renames the legitimate Bal-
lotStation executable to \FFX\Bin\AccuVote.exe,
and then it copies itself to the machine’s on-board flash
memory with the name \FFX\Bin\BallotStation.
exe. It adopts the name of the BallotStation executable
so it will still run at start-up even if the machine is booted
without a memory card in the first PC Card slot. Next, it
copies the malicious bootloader image from the card to
the on-board flash . Thereafter, the software periodically
checks whether an uninfected memory card is present in
the machine, and, if so, it copies the virus files onto the
card so that other machines where the card is used will
become infected. Finally, the vote-stealing application
runs in the background, changing votes in the manner
described in Section 4.2.

11In order to avoid printing out fake update messages when the copy
of fboot.nb0 on the card was put there by the virus bootloader itself,
whenever the virus bootloader copies itself to a card, it sets the hid-
den, system, and read-only FAT attributes of the resulting fboot.nb0
file. Then, when the virus bootloader checks for the presence of the
fboot.nb0 file on the card, it only prints out fake update messages
if the file does not have those attributes. Alternatively, the virus boot-
loader could identify copies of itself by examining the contents of the
fboot.nb0 file for some characteristic bit string.

4.4 Demo Denial-of-Service Attack

To illustrate how malicious software running on an
AccuVote-TS could launch a denial-of-service (DoS) at-
tack, we developed a demonstration attack program that,
on command, erases the contents of both the currently-
inserted memory card and the machine’s on-board flash
memory. This attack not only destroys all records of
the election currently in progress (both the primary and
backup copies), but also renders the machine inoperable
until a service technician has the opportunity to dismantle
it and restore its configuration.

The demonstration DoS program is comprised of a user-
space Windows CE executable that triggers the attack and
a malicious bootloader that functions like an ordinary boot-
loader, except that upon receiving the appropriate signal,
it completely erases the currently-inserted memory card
and the machine’s on-board flash memory. The user-space
trigger program works by first writing a special value to
a part of the machine’s on-board flash memory that is
accessible from user-space programs and then crashing
the machine by invoking the PowerOffSystem() Win-
dows CE API call. The PowerOffSystem() API is
supposed to put the system in a low-power “sleep” mode
from which it can later “wake-up,” but when this API is
invoked on an AccuVote-TS, the machine simply crashes.
When the machine is rebooted (which must be done man-
ually), the malicious bootloader notices that the special
value has been written to the machine’s on-board flash
memory. On this signal, it completely erases the contents
of both the currently-inserted memory card and the ma-
chine’s on-board flash memory. In so doing, the malicious
bootloader destroys all of the data, software, and file sys-
tem formatting on both the memory card and the on-board
flash memory.

In order to account for the possibility that the mali-
cious bootloader never gets a chance to completely erase
both storage media or that the memory card is removed
before the machine is rebooted, the user-space trigger
program deletes as much as it can before crashing the
machine. It deletes all of the files on the memory card and
on the machine’s on-board \FFX file system including
both the primary and backup copies of the election results
(election.brs), the audit logs (election.adt),
and the BallotStation executable. When it deletes these
files, it overwrites each of them with garbage data to make
it less likely that the files will ever be recovered.

While our demonstration DoS attack is triggered by a
user’s command, a real attacker could create malicious
software that only triggers the above attack on a specific
date and time, such as on election day. An attacker could
also design the attack to launch in response to a specific
trend in voting during an election, such as an apparent
victory for a particular candidate. Like a vote-stealing

Exhibits to 5.10.17 Kemp letter Page 21

attack, a DoS attack could be spread by a virus.

5 Mitigation

The vulnerabilities that we have described can be miti-
gated, to some extent, by changing voting machine de-
signs and election procedures. In this section we discuss
several mitigation strategies and their limitations.

5.1 Software and Hardware Modifications

The AccuVote-TS machine is vulnerable to computer
viruses because it automatically loads and runs code found
on memory cards without authenticating it. Its software
could be redesigned to inhibit the spread of viruses, how-
ever. One approach would be to digitally sign all software
updates and have the machine’s software verify the sig-
nature of each update before installing it. Such a change
would ensure that only updates signed by the manufacturer
or another trusted certifying authority could be loaded.12

It would also be helpful to require the person using the
machine to confirm any software updates. Confirmation
of updates would not prevent a malicious person with
physical access to the machine from loading an update,
but at least it would make the accidental spread of a virus
less likely while the machine was being used by honest
election officials.

While redesigning the voting machine’s software can
help mitigate some of the security problems that we iden-
tify, there are other problems inherent in the AccuVote-TS
hardware architecture that cannot be addressed by soft-
ware changes. For example, there is nothing to stop an
adversary who has physical access to the machine from
booting and installing his own malicious software by re-
placing the socketed EPROM chip on the motherboard.
Furthermore, because all of the machine’s state is kept
in rewritable storage (RAM, flash memory, or a memory
card), it is impossible to create tamper-proof logs, records,
and counters. In addition, as is the case with ordinary
PCs, it is difficult to determine with certainty that the ma-
chine is actually running the software that it is supposed
to run. Rootkit techniques [16] and virtualization tech-
nologies [21], which are often used to conceal malware
in the PC setting, could be adapted for use on the voting
machines.

Researchers have proposed various strategies for build-
ing specialized hardware capable of maintaining tamper-
proof and tamper-evident logs, records, and counters
(e.g., [37]), as well as software strategies that provide

12Adding signatures would not be effective if a machine has already
been infected with malicious code; machines would need to be booted
from EPROM and completely restored to a known state before their
software were updated to a version that checked signatures.

more limited protection (e.g., [33]). Although such meth-
ods could prevent attacks that aim to alter votes after they
have been recorded, they could not prevent malicious code
from changing future votes by altering data before it is
sent to the storage device.

Assuring a computer’s software configuration is also a
notoriously difficult problem, and research has focused
on mechanisms to ensure that only approved code can
boot [1] or that a machine can prove to a remote observer
that it is running certain code [37]. For example, commer-
cial systems such as Microsoft’s Xbox game console have
incorporated mechanisms to try to resist modification of
the boot code or operating system, but they have not been
entirely successful [17]. Although mechanisms of this
type are imperfect and remain subjects of active research,
they seem appropriate for voting machines because they
offer some level of assurance against malicious code injec-
tion. It is somewhat discouraging to see voting machine
designers spend much less effort on this issue than game
console designers.

While changes to the hardware and software of voting
machines can reduce the threats of malicious code injec-
tion and log tampering, no purely technical solution can
eliminate these problems.

5.2 Physical Access Controls

Despite the best efforts of hardware and software design-
ers, any physical access to a computer still raises the pos-
sibility of malicious code installation, so election officials
should limit access to voting machines’ internals, their
memory cards, and their memory card slots to the extent
possible.

There is some benefit in sealing the machine’s case,
memory card, and card bay door with individually num-
bered tamper-evident seals, in the hope of detecting illicit
accesses to these areas. While these measures may expose
some classes of attacks, they make denial-of-service at-
tacks easier. Suppose, for example, that a malicious voter
cuts a seal while an election is in progress. If machines
with broken seals are treated as completely untrustworthy,
then cutting the seal is itself an effective denial-of-service
attack. If broken seals are usually ignored when every-
thing else seems to be in order, then an attacker has a
good chance of successfully inserting malicious code that
cleans up after itself. There seems to be no fully satisfac-
tory compromise point between these two extremes.

Even leaving aside the possibility that voters will de-
liberately break seals, broken seals are an unfortunately
common occurrence. The most comprehensive study of
AccuVote DRE election processes in practice examined
the May 2006 primary election in Cuyahoga County, Ohio,
which used AccuVote-TSx machines. The study found
that more than 15% of polling places reported at least one

Exhibits to 5.10.17 Kemp letter Page 22

problem with seals [13].
The available evidence is that machines and memory

cards are not handled with anything approaching the nec-
essary level of care. For example, the Cuyahoga County
study [13] reported many procedural weaknesses: “A lack
of inventory control and gaps in the chain of custody of
mission critical assets (i.e. DRE memory cards, [DREs],
. . .)” (p. 103); “the systems of seals, signatures and other
security features of the. . . machine memory cards were not
implemented on a consistent basis” (p. 109); “It appears
that memory cards are regularly removed and re-inserted
when a DRE becomes out-of-service. Security tabs are
broken and no log of this remove and replace activity is
maintained. . . There is no indication that a record compar-
ing memory card to DRE serial number is kept” (p. 138);
“Security seals are not checked for integrity at the end of
Election Day, nor are they matched with a deployment
list of Security seal serial numbers. There is no attempt
to reconcile memory cards intended for the precinct with
memory cards removed from the DREs at the end of the
day. . . Therefore, it is unknown whether these memory
cards were tampered with during Election Day” (p. 139);
“There is no established chain of custody during the trans-
fer of the memory cards. . . from the vote center to the
BOE [Board of Elections]” (p. 140); “Security seals are
collected upon return to the BOE, but these serial numbers
are neither logged nor checked against the original secu-
rity seal serial numbers deployed with the memory cards.
Therefore, it is unknown whether these memory cards
were tampered with during transport to the BOE from
the polling location” (p. 140). These problems require
immediate attention from election officials.

Security seals do some good, but it is not a solution
simply to assume that seals will always be used, always be
checked, and never be broken. Inevitably, some seals will
be missing or broken without an explanation, providing
potential cover for the insertion of malicious code or a
voting machine virus.

5.3 Effective Parallel Testing

In parallel testing, election officials choose some voting
machines at random and set them aside, casting simulated
votes on them throughout election day and verifying at the
end of the election that the machines counted the simulated
votes correctly. The goal of parallel testing is to trigger
and detect any vote-stealing software that may be installed
on the machines.

A challenge in parallel testing is how to make the simu-
lated voting pattern realistic. If the pattern is unrealistic in
some respect—if, say, the distribution of votes throughout
the day doesn’t match what a real voting machine would
see—then vote-stealing software may be able to tell the
difference between a real election and parallel testing, al-

lowing the software to steal votes in the real election while
leaving results unchanged in parallel testing.

Parallel testing is also vulnerable to a “secret knock”
attack by a testing insider. Generally, parallel tests are
carried out by representatives from all political parties
to ensure impartiality. However, if one representative
has placed vote altering code on the machines, she could
disable the code on the machine being tested by issuing
a surreptitious command. For example, the code might
watch for a specific sequence of touches in a normally
unused area of the screen and deactivate its vote alter-
ing function in response. Preventing this kind of attack
requires carefully scripting the testing procedure.

Alternatively, a secret knock might be used to activate
malicious code. In this scheme, malicious voters would
perform the secret knock on the machines being used to
collect real votes, or a malicious election worker would
perform it surreptitiously when setting up the machines,
and vote-stealing software would wait for this secret knock
before operating. Machines chosen for parallel testing
would not see the secret knock and so would count votes
honestly. This approach has the drawback (for the attacker)
of requiring a significant number of malicious voters or
a malicious poll worker to participate, though these par-
ticipants would not have to know all the details of the
attack.

These possibilities reduce the usefulness of parallel test-
ing in practice, but we think it can still be a worthwhile
precaution when conducted according to rigorously con-
trolled procedures.

5.4 Effective Whole-System Certification

Despite their very serious security flaws, the Diebold
DREs were certified according to federal and state stan-
dards. This demonstrates that the certification processes
are deficient. The Federal Election Commission’s 2002
Voting System Standards [14] say relatively little about
security, seeming to focus instead on the machine’s relia-
bility if used non-maliciously.

The U.S. Election Assistance Commission issued vol-
untary voting system guidelines [38] in 2005. These are
considerably more detailed, especially in the area of se-
curity, than the FEC’s 2002 standards. Though it would
not be entirely fair to apply the 2005 guidelines to the
pre-2005 version of the AccuVote software we studied, we
do note that the AccuVote-TS hardware architecture may
make it impossible to comply with the 2005 guidelines,
in particular with the requirement to detect unauthorized
modifications to the system software (see [38], Volume I,
Section 7.4.6). In practice, a technology can be deployed
despite noncompliance with certification requirements if
the testing agencies fail to notice the problem.

In general, the certification process seems to rely more

Exhibits to 5.10.17 Kemp letter Page 23

on testing than analysis. Testing is appropriate for some
properties of interest, such as reliability in the face of heat,
cold, and vibration, but testing is ill-suited for finding se-
curity problems. As discussed frequently in the literature,
testing can only show that a system works under specific,
predefined conditions; it generally cannot ensure that there
is no way for an attacker to achieve some goal by violating
these conditions. Only a competent and thorough security
analysis can provide any confidence that the system can
resist the full range of realistic attacks.

Weak certification would be less of a problem if in-
formation about the system’s design were more widely
available to the public. Researchers and other experts
would be able to provide valuable feedback on voting
machine designs if they had the information to do so. Ide-
ally, strong certification procedures would be coupled with
public scrutiny to provide the highest assurance.

5.5 Software-Independent Design

Although the strategies described above can contribute
to the integrity of election results, none are sufficient to
mitigate the vote-stealing attacks that we have demon-
strated. The only known method of achieving an ac-
ceptable level of security against the attacks we describe
is software-independent design. “A voting system is
software-independent if an undetected change or error
in its software cannot cause an undetectable change or
error in an election outcome [31].” In the near term, the
only practical way to make DREs software-independent
is through the use of a voter-verifiable paper audit trail
(VVPAT) coupled with random audits. The VVPAT cre-
ates a paper record, verified visually by the voter, of how
each vote was cast. This record can be either a paper ballot
that is deposited by the voter in a traditional ballot box,
or a ballot-under-glass system that keeps the paper record
within the voting machine but lets the voter see it [24]. A
VVPAT makes our vote-stealing attack detectable. In an
all-electronic system like the Diebold DREs, malicious
code can modify all of the logs and records in the machine,
thereby covering up its vote stealing, but the machine can-
not modify already created paper records, and the accuracy
of the paper records is verified by voters.

Paper trails have their own failure modes, of course. If
they are poorly implemented, or if voters do not know
how or do not bother to check them, they may have little
value [3, 13]. The real advantage of a paper trail is that its
failure modes differ significantly from those of electronic
systems, making the combination of paper and electronic
record keeping harder to defraud than either would be
alone. Requiring a would-be vote stealer to carry out
both a code-injection attack on the voting machines and
a physical ballot box stuffing attack would significantly
raise the difficulty of attacking the system.

Paper ballots are only an effective safeguard if they are
actually used to check the accuracy of the machines. This
need not be done everywhere. It is enough to choose a
small fraction of the polling places at random and verify
that the paper ballots match the electronic records there. If
the polling places to recount are chosen by a suitable ran-
dom procedure, election officials can establish with high
probability that a full comparison of paper and electronic
records would not change the election’s result. Meth-
ods for conducting these random audits are discussed by
Rivest [2] and Calandrino, et al. [6], among others.

Another limitation of VVPATs is that they cannot stop
a denial-of-service attack from spoiling an election by dis-
abling a large number of voting machines on election day.
Given this possibility, if DREs are used, it is worthwhile
to have an alternative voting technology available, such as
paper ballots.

In the future, cryptographic voting may provide an alter-
native means of achieving software-independence that of-
fers greater security than VVPATs. Cryptographic voting
systems (e.g., [32, 5]) aim not only to allow voters to ver-
ify that their votes were recorded as cast, but also to allow
them to confirm that their ballots were actually included
in the final vote totals. Currently, however, achieving ac-
ceptable usability and maintaining ballot secrecy remain
challenges for such schemes (see [19]).

6 Related Work

Several previous studies have criticized the security of the
Diebold AccuVote DRE systems. The first major study
of these machines was published in 2003 by Kohno et
al. [22], who did not have access to a machine but did
have a leaked version of the source code for BallotStation.
They found numerous security flaws in the software and
concluded that its design did not show evidence of any
sophisticated security thinking. They did not study the
AccuVote-TS’s kernel or bootloader, however.

Public concern in light of Kohno’s study led the state
of Maryland to authorize two security studies. The first
study, by SAIC, reported that the system was “at high risk
of compromise” [34]. RABA, a security consulting firm,
was hired to do another independent study of the Diebold
machines. RABA had access to a number of machines
and some technical documentation. Their study [30] was
generally consistent with Kohno’s findings, and found
some new vulnerabilities. It suggested design changes to
the Diebold system, and outlined some steps that Mary-
land might take to reduce the risk of security problems.
The state responded by adopting many of RABA’s sugges-
tions [23].

A further security assessment was commissioned by
the Ohio Secretary of State and carried out by the Com-
puware Corporation [7]. This study examined several

Exhibits to 5.10.17 Kemp letter Page 24

DRE systems, including the AccuVote-TS running the
same version of BallotStation as our machine, and identi-
fied several high risk security problems.

In 2006, in response to reports that Harri Hursti had
found flaws in Diebold’s AccuBasic subsystem, the state
of California asked Wagner, Jefferson, and Bishop to
perform a study of AccuBasic security issues. Their re-
port [39] identified several vulnerabilities that differ from
those that we describe because the machine that we studied
lacks the AccuBasic subsystem.

Later in 2006, Hursti released a report [18] describing
several security weaknesses in the AccuVote-TS and -TSx
systems that could allow an attacker to install malicious
software by subverting the systems’ software update mech-
anisms. These weaknesses form the basis for many of the
attacks that we describe in the current study. With limited
access to the voting machines, Hursti could only confirm
that one of these weaknesses could be exploited; we show
that many of the others can be as well.

Our work builds on these previous reports. Our find-
ings generally confirm the behaviors and vulnerabilities
described by Kohno et al., RABA, and Hursti, and demon-
strate through proof-of-concept implementations that the
vulnerabilities can be exploited to implement viral attacks
and to change election results. To our knowledge, our
work is the first comprehensive, public description of these
threats to Diebold’s DREs.

Several studies discuss general issues in the construc-
tion of software-based attacks on DRE voting machines.
Kelsey [20] catalogs the attacker’s design choices; our
analysis confirms that all or nearly all of the attack options
Kelsey discusses can be carried out against the Diebold
machine we studied. The Brennan Center report [3] offers
a broader but less technical discussion; its discussion of
malicious software injection attacks is based partially on
Kelsey’s analysis.

Additionally, there is an extensive literature on elec-
tronic voting in general, which we will not attempt to
survey here.

7 Conclusion

From a computer security standpoint, DREs have much
in common with desktop PCs. Both suffer from many
of the same security and reliability problems, including
bugs, crashes, malicious software, and data tampering.
Despite years of research and enormous investment, PCs
remain vulnerable to these problems, so it is doubtful,
unfortunately, that DRE vendors will be able to overcome
them.

Nevertheless, the practical question facing public offi-
cials is whether DREs provide better security than other
election technologies, which have their own history of fail-
ure and fraud. DREs may resist small-scale fraud as well

as, or better than, older voting technologies; but DREs
are much more vulnerable to large-scale fraud. Attacks
on DREs can spread virally, they can be injected far in
advance and lurk passively until election day, and they can
alter logs to cover their tracks. Procedures designed to
control small-scale fraud are no longer sufficient—DREs
demand new safeguards.

Electronic voting machines have their advantages, but
experience with the AccuVote-TS and other paperless
DREs shows that they are prone to very serious vulner-
abilities. Making them safe, given the limitations of to-
day’s technology, will require safeguards beginning with
software-independent design and truly independent secu-
rity evaluation.

Acknowledgments

We thank Andrew Appel, Jeff Dwoskin, Laura Felten,
Shirley Gaw, Brie Ilenda, Scott Karlin, Yoshi Kohno,
David Robinson, Avi Rubin, Adam Stubblefield, Dan Wal-
lach, and Harlan Yu for technical help, information, and
feedback. We are especially grateful to the party who
provided us the machine to study.

This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

References

[1] ARBAUGH, W., FARBER, D., AND SMITH, J. A secure
and reliable bootstrap architecture. In Proc. 1997 IEEE
Symposium on Security and Privacy, pp. 65–71.

[2] ASLAM, J., POPA, R., AND RIVEST, R. On esti-
mating the size of a statistical audit. In Proc. 2007
USENIX/ACCURATE Electronic Voting Technology Work-
shop (EVT’07).

[3] BRENNAN CENTER TASK FORCE ON VOTING SYSTEM

SECURITY. The Machinery of Democracy: Protecting
Elections in an Electronic World. 2006.

[4] BROACHE, A. Diebold reveals ‘key’ to e-voting? CNet
News.com (Jan. 2007). Available at http://news.com.com/
2061-10796 3-6153328.html.

[5] C. A. NEFF. Practical high certainty intent verification for
encrypted votes. Available at http://www.votehere.com/
vhti/documentation/vsv-2.0.3638.pdf, 2004.

[6] CALANDRINO, J., HALDERMAN, J. A., AND FELTEN,
E. Machine-assisted election auditing. In Proc. 2007
USENIX/ACCURATE Electronic Voting Technology Work-
shop (EVT’07).

Exhibits to 5.10.17 Kemp letter Page 25

[7] COMPUWARE. Direct recording electronic (DRE) technical
security assessment report. Available at http://www.sos.
state.oh.us/sos/hava/compuware112103.pdf, 2003.

[8] DATALIGHT. FlashFX product details. Available at http:
//datalight.com/products/flashfx/productdetails.php.

[9] DATARESCUE. IDA Pro Disassembler. Available at http:
//www.datarescue.com/idabase.

[10] DIEBOLD ELECTION SYSTEMS. Checks and balances in
elections equipment and procedures prevent alleged fraud
scenarios. Available at http://www.votetrustusa.org/pdfs/
DieboldFolder/checksandbalances.pdf, 2003.

[11] DIEBOLD ELECTION SYSTEMS. Press release: State of
Maryland awards Diebold electronic voting equipment
order valued at up to $55.6 million. Available at http:
//www.diebold.com/news/newsdisp.asp?id=2979, 2003.

[12] ELECTION DATA SERVICES. 2006 voting equipment
study. Available at http://www.edssurvey.com/images/File/
ve2006 nrpt.pdf.

[13] ELECTION SCIENCE INSTITUTE. DRE analysis for
May 2006 primary, Cuyahoga County, Ohio. Available
at http://bocc.cuyahogacounty.us/GSC/pdf/esi cuyahoga
final.pdf, Aug. 2006.

[14] FEDERAL ELECTION COMMISSION. Voting system stan-
dards. Available at http://www.eac.gov/election resources/
vss.html, 2002.

[15] HAUG, N. Vendor proposal evaluation findings report and
addendum. Available at http://www.sos.state.oh.us/sos/
hava/findings091003.pdf, 2003.

[16] HOGLUND, G., AND BUTLER, J. Rootkits: Subverting the
Windows Kernel. Addison-Wesley, 2005.

[17] HUANG, A. Hacking the Xbox: An Introduction to Reverse
Engineering. No Starch Press, 2003.

[18] HURSTI, H. Critical security issues with Diebold TSx
(unredacted). Available at http://www.bbvdocs.org/reports/
BBVreportIIunredacted.pdf, May 2006.

[19] KARLOF, C., SASTRY, N., AND WAGNER, D. Cryp-
tographic voting protocols: A systems perspective. In
Proc. 14th USENIX Security Symposium (2005).

[20] KELSEY, J. Strategies for software attacks on voting ma-
chines. In NIST Workshop on Threats to Voting Systems
(2005).

[21] KING, S., CHEN, P., WANG, Y., VERBOWSKI, C.,
WANG, H., AND LORCH, J. SubVirt: Implementing mal-
ware with virtual machines. In Proc. 2006 IEEE Sympo-
sium on Security and Privacy, pp. 314–327.

[22] KOHNO, T., STUBBLEFIELD, A., RUBIN, A., AND WAL-
LACH, D. Analysis of an electronic voting system. In Proc.
2004 IEEE Symposium on Security and Privacy, pp. 27–42.

[23] MARYLAND STATE BOARD OF ELECTIONS. Response
to: Department of legislative services trusted agent re-
port on Diebold AccuVote-TS voting system. Avail-
able at http://mlis.state.md.us/Other/voting system/sbe
response.pdf, 2004.

[24] MERCURI, R. Electronic Vote Tabulation: Checks and
Balances. PhD thesis, University of Pennsylvania, 2001.

[25] MICROSOFT. Configuring the process boot phase.
Available at http://msdn2.microsoft.com/en-us/library/
ms901773.aspx.

[26] MICROSOFT. Filesys.exe boot process. Available at http:
//msdn2.microsoft.com/en-us/library/ms885423.aspx.

[27] MICROSOFT. Windows CE binary image data format spec-
ification. Available at http://msdn2.microsoft.com/en-us/
library/ms924510.aspx.

[28] NEUMANN, P. Security criteria for electronic voting. In
16th National Computer Security Conference (1993).

[29] OPEN VOTING CONSORTIUM. Worst ever security
flaw found in Diebold TS voting machine. Available at
http://www.openvotingconsortium.org/blog/2006-jul-31/
worst flaw ever in diebold touch screen voting machine
revealed, 2006.

[30] RABA TECHNOLOGIES. Trusted agent report: Diebold
AccuVote-TS voting system. Available at http://www.raba.
com/press/TA Report AccuVote.pdf, 2004.

[31] RIVEST, R., AND WACK, J. On the notion of “software
independence” in voting systems. Available at http://vote.
nist.gov/SI-in-voting.pdf, July 2006.

[32] S. POPOVENIUC AND B. HOSP. An introduction to
punchscan. Available at http://www.punchscan.org/papers/
popoveniuc hosp punchscan introduction.pdf, 2006.

[33] SCHNEIER, B., AND KELSEY, J. Cryptographic sup-
port for secure logs on untrusted machines. In Proc. 7th
USENIX Security Symposium (1998).

[34] SCIENCE APPLICATIONS INTERNATIONAL CORPORA-
TION. Risk assessment report: Diebold AccuVote-TS
voting system and processes (unredacted). Available at
http://www.bradblog.com/?p=3731, 2003.

[35] SONGINI, M. E-voting security under fire in San Diego
lawsuit. Computerworld (Aug. 2006).

[36] STATE OF MARYLAND. Code of Maryland regulations,
Title 33, State Board of Elections. Available at http://www.
dsd.state.md.us/comar/subtitle chapters/33 Chapters.htm.

[37] TRUSTED COMPUTING GROUP. TCG TPM specification.
Available at https://www.trustedcomputinggroup.org/specs/
TPM.

[38] UNITED STATES ELECTION ASSISTANCE COMMISSION.
Voluntary voting systems guidelines. Available at http:
//www.eac.gov/vvsg intro.htm, 2005.

[39] WAGNER, D., JEFFERSON, D., AND BISHOP, M. Security
analysis of the Diebold AccuBasic interpreter. Avail-
able at http://www.ss.ca.gov/elections/voting systems/
security analysis of the diebold accubasic interpreter.pdf,
Feb. 2006.

[40] WILLIAMS, B. Security in the Georgia voting system.
Available at http://www.votescount.com/georgia.pdf, 2003.

Exhibits to 5.10.17 Kemp letter Page 26

Exhibit D

Assumed software versions in use in Georgia for 2017 elections

Optical Scan
AccuVote OS 1.94W

Touch Screen
R6 – Ballot Station 4.5.2! *
TSx – Ballot Station 4.5.2! *

ExpressPoll
Express Poll 2.1.2
Security Key 4.5

Election Management System
GEMS 1.18.22 G

Source-- Georgia’s Logic and Accuracy Testing Manual v1.4
(https://www.eac.gov/assets/1/28/Logic_and_Accuracy_Testing_Manual_Final_v1.4.pdf)

*Note: We assume that the version in use is 4.5.2 as issued by Diebold/Premier and
installed without modifications. We assume that the “!” in the version number is a stray
typo with no significance.

Exhibits to 5.10.17 Kemp letter Page 27

	Voters' Letter to SOS Kemp 5.10.17
	Kemp Exhibits
	Exhibit A Letter to Kemp_.3.15.17
	Exhibit B. GEMS database
	Exhibit C. Feldman Haldeman Felten
	Exhibit D Kemp letter

